Farmers’ attitude towards the climate resilient technologies of NICRA project in Anantapur district

Abstract

Climate change has been perceived with high emphasis from the beginning of this century. Since its effects causes direct effects on ecosystem and agriculture especially farmers of dryland regions, a research study has been conducted in order to assess the farmers’ attitude towards climate resilient technologies of NICRA project by farmers of Anantapur district of Andhra Pradesh. The sample consists of 60 farmers as beneficiaries from NICRA villages and 60 farmers as nonbeneficiaries from non-NICRA villages were selected randomly. The ex-post facto research design was used in the study. The results of the study shown that 51.67 per cent of beneficiaries and 48.33 per cent of non-beneficiaries had a medium level of favorableness towards climate resilient technologies of NICRA project. From the above findings this is concluded that both beneficiaries and non-beneficiaries of NICRA project have a positive favorable attitude towards climate resilient technologies which is considered as a precursor for adoption of those technologies by the farming community. Hence the results of this research study may help extension organizations for well training and implementation of climate resilient technologies of National Innovations on Climate Resilient Agriculture (NICRA).

Keywords: Attitude, NICRA, climate-resilient technologies

Introduction

In India, Agro-ecosystem is more vulnerable for the effects of climate variations. Farmers are the specialists’ those are totally engaging in these ecosystems for their livelihood activities, especially farmers of dryland areas. Out of 141 million hectares of cultivated land in India, 80 million hectares are rainfed and dryland which contributes 40% of
food grain production and 2/3rd of the livestock forage production has been done (CRIDA, 2011). These facts directly portray the importance and dependency of dryland agriculture in Indian economy. As per the recent report, the average global temperature rise is 0.99°C since the pre-industrial time of 1850 (Schmidt et al., 2019). The effects of climate variation have been classified as economic effects, environmental effects and social effects (ILO, 2011). Under environmental effects, sea level rise, heat waves, cyclones, floods, loss of biodiversity, forest fires, unseasonal rainfall, droughts and rise in surface temperature are the major effects. Effect on productivity, production, livestock diseases, employment and income are those effects leads to economic losses for farmers. Social effects are food security, public health, employment, income, livelihood, gender, education, housing, poverty and migration which are less perceived earlier and now more researches are being conducted in social effects of climate change[5-11]. In order to find sustainable solution to the above listed effects of climate variation, Indian Council of Agricultural Research (ICAR) came up with a project called National Initiatives on Climate Resilient Agriculture (NICRA) in February 2011 with the objective of long-term strategic research for the adaptation of crops, livestock, natural resource management and possible institutional interventions to mitigate climate change and its effects[6]. Natural resource management is the systematic management of natural resources like, land, water, soil, etc. The climate resilient natural resource management practices as mentioned by the NICRA are in-situ moisture conservation, water harvesting and recycling for supplemental irrigation, improved drainage in flood prone areas, conservation tillage where appropriate, artificial ground water recharge and water saving irrigation methods. Climate resilient crop production practices are introducing drought/temperature tolerant varieties, advancement of planting dates of rabi crops in areas with terminal heat stress, water saving paddy cultivation methods (SRI, aerobic, direct seeding), frost management in horticulture through fumigation, community nurseries for delayed monsoon, custom hiring centres for timely planting, location specific intercropping systems with high sustainable yield index. Climate resilient livestock management practices as listed by NICRA are use of community lands for fodder production during droughts/floods, improved fodder/feed storage methods, preventive vaccination, improved shelters for reducing heat stress in livestock, management of fish ponds/tanks during water scarcity and excess water, etc. Interventions like seed bank, fodder bank, commodity groups, custom hiring centre, collective marketing, and introduction of weather index based insurance and climate literacy through a village level weather station are considered as climate resilient institutional interventions [12]. With this background we have undertaken a study to assess the attitude of
farmers towards the climate-resilient technologies among both beneficiaries and non-beneficiaries of NICRA project in Anantapur district of Andhra Pradesh.

Material and methods

The present study was conducted in the Anantapur district, which is largest and driest district of Andhra Pradesh during the year 2018 - 2019. This district was purposively selected because the NICRA has been implemented in this district since its inception. Chamaluru, Chakrayapeta, and Peravalli villages were selected purposively for the study, as NICRA was implemented in these selected villages of the Anantapur district. Aakuledu, Podaralla, and Siddaramapuram villages were selected under non-NICRA villages, where the program was not implemented. From each selected village, 20 respondents were selected by simple random sampling technique. The sample comprising of 60 farmers as beneficiaries from NICRA villages and 60 farmers as non-beneficiaries from non-NICRA villages are selected randomly. Thus, making a total sample size of 120 respondents in the study. The ex-post facto research design was used in the study. The primary data was collected using structured and pre tested interview schedule from the respondents. The responses were measured using five point continuum, ‘Strongly Agree’, ‘Agree’, ‘Undecided’, ‘Disagree’, and ‘Strongly Disagree’ with scores of five, four, three, two and one, respectively for positive statements and the reverse for negative statements to study the attitude of farmers towards the climate-resilient technologies were collected. Respondents were asked to choose their response for each statement on a five point continuum. With the total score obtained from the attitudinal statements/items the respondents were classified into three categories such as less favourable, favourable and highly favourable on the basis of mean and standard deviation.

Table 01: Distribution of respondents according to their attitude towards the climate resilient technologies of NICRA project

<table>
<thead>
<tr>
<th>S. No</th>
<th>Categories</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Less Favouable</td>
<td>Below mean - SD</td>
</tr>
</tbody>
</table>
Results and discussion

Table 02: Distribution of respondents according to their attitude towards the climate resilient technologies of NICRA project

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Category</th>
<th>Beneficiaries (n=60)</th>
<th>Non-Beneficiaries (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Frequency</td>
<td>%</td>
</tr>
<tr>
<td>1.</td>
<td>Less Favourable</td>
<td>11</td>
<td>18.33</td>
</tr>
<tr>
<td>2.</td>
<td>Favourable</td>
<td>31</td>
<td>51.67</td>
</tr>
<tr>
<td>3.</td>
<td>Highly Favourable</td>
<td>18</td>
<td>30.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>60</td>
<td>100.00</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>88.21</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>09.74</td>
<td></td>
</tr>
</tbody>
</table>

An analytical look at the table 02, made it clear that, more than half of the beneficiaries (51.67%) had favourable attitude towards the climate resilient technologies followed by highly favourable (30.00%) and less favourable (18.33%) attitude, respectively.

In case of non-beneficiaries, nearly half of the respondents (48.33%) had favourable attitude towards the climate resilient technologies followed by less favourable (36.67%) and highly favourable (15.00%), respectively.
Attitude is individual oriented while values are society-oriented. Though the individual develops a favourable attitude towards climate resilient technologies, the values of the society which decide the action of individuals may come in the way of rational behaviour. Favourable attitude act as a factor for the selection of practices to stabilize yield and income. Because of educational efforts of KVK, beneficiary farmer developed favourable attitude towards climate resilient technologies compared to non-beneficiaries. Hence, this trend was observed. The findings are in agreement with the findings of Charitha (2017) and Alagu and Bose (2019) [1&2].

**Conclusion**

From the results of this study, we can conclude that half of the farmers among both per cent of beneficiaries and non-beneficiaries had a medium level of favorableness towards climate resilient technologies of NICRA project. With these results we can state that both beneficiaries and non-beneficiaries of NICRA project have a positive favorable attitude.
towards climate resilient technologies that favourable attitude act as a factor for the selection and adoption of practices to stabilize yield and income. Because of educational efforts of KVK, beneficiary farmer developed favourable attitude towards climate resilient technologies compared to non-beneficiaries. Hence, the results of this research study may help extension organizations for well training and implementation of climate resilient technologies of National Innovations on Climate Resilient Agriculture (NICRA).

References


Assessment and Awareness Programme. Central Research Institute for Dryland Agriculture, Santoshnagar, Hyderabad, Andhra Pradesh, India. 2011; 33p.


