A temperature based model for cotton mealybug to development, survival and population growth potential

ABSTRACT

Aims: Based on the different temperature model, analysis the cotton mealy bug growth, developmental, survival, mortality, and reproduction rate.

Place and Duration of Study: This secondary data were collected from Central Institute of Cotton Research, Coimbatore.

Methodology: In this study, we used models like the Sharpe and DeMichele model, the Wang model, the Polynomial model, the Stinner model, and the Gaussian model. To measure the goodness-of-fit criteria, the model performance has been assured using Coefficient of Determination (R^2), Alkaline Information Criteria (AIC), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute error (MAE), Relative Absolute Error (RAE) and Relative Standard Error (RSE).

Result and conclusion: From the Sharpe and Demichele and Polynomial models, male have highest R^2 and least error values. From the Wang model, nymph 3 has highest R^2 and least error values. When compare all models the Polynomial model have highest R^2 and least error values. So it is the best fit model compare to all the models.

Keywords: [Sharpe and DeMichele model, Wang model, Polynomial model, Stinner model, Gaussian model]

1. INTRODUCTION

Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), a mealy bug is native to Northern America [1]. It is a very harmful pest, an important and serious pest of cotton crops. It has been documented in over 24 countries throughout the world, where it causes severe crop losses. During 2005–2009, India and Pakistan experienced destructive *P. solenopsis* outbreaks on cotton, culminating in 30–60% yield losses. It was first documented in the middle parts of Gujarat State in 2005 [2]. In 2006, *Gossypium hirsutum* was found in all nine cotton growing states of India, such as Punjab, Rajasthan, Haryana, Andhra Pradesh, Gujarat, Karnataka, Tamil Nadu, Madhya Pradesh, and Maharashtra. In 2007, severe economic damage to *G. hirsutum* was reported in four major cotton growing districts of Punjab, two districts such as Hisar and Sirsa of Haryana. It causes low to moderate damage in parts of Maharashtra, Tamil Nadu, and Andhra Pradesh states [3]. For *P. solenopsis*, a linear model degree-day based on the formation of heat units above the lower temperature threshold limit has been developed [4]. To measure the mealy big development, survival, linear and nonlinear models were used. Linear models, especially when subjected to shifting temperature regimes produce mistakes at temperature extremes and are consequently regarded as poor predictors of insect growth [5]. It has the benefit of being simple and allowing estimate of insect species developmental thresholds and degree-day requirements. However, this model is not appropriate for nonlinearity in both high and low temperatures, resulting in inaccurate and biased conclusions. Nonlinear models were created to enhance these results. Most of the nonlinear models are empirical in nature and
have four or five parameters. Logan, Briere, Hilbert, Lamb, Sharpe and DeMichele, Wang, Lactin, Stinner, and Gaussian models are used to predict the insect’s development, survival and reproduction rate. In this study the nonlinear models were used Sharpe and DeMichele model, Wang model, Polynomial model, Stinner model, and Gaussian model. Modified Sharpe and DeMichele’s (1977) parameters were based on enzyme kinetics, and each of the three to six factors has a thermodynamic biochemical interpretation.

2. MATERIAL AND METHODS

2.1 Development rate

The nonlinearity in developmental rate in the temperature extremes was estimated using a modified version of the Sharpe and DeMichele model [6,7]. Poikilotherms derive their body heat entirely from their surroundings. The biological significance of this model to species development dictated that the development of poikilotherms is driven by a rate determining temperature or enzyme complex with the following three basic reversible energy rates. These are inactive at extreme cold condition, active at optimum temperatures, and inactive at high temperature condition. For the different stages, the Sharpe and DeMichele model is

\[r(T) = \frac{T}{p} \cdot \frac{1}{T_0} \cdot \frac{\Delta H_a}{R} \left(1 - \frac{1}{T_0 - T} \right) \left[1 + e^{\frac{\Delta H_a}{R} \left(\frac{1}{T_0} - \frac{1}{T} \right)} \right] \]

where, \(r(T) \) is rate of development at temperature \(T \) (°K), \(R \) is the universal gas constant (1.987 cal degree\(^{-1}\) mol\(^{-1}\)), \(P \) represents the development rate at optimum temperature \(T_o \) (°K) assuming no enzyme inactivation, \(\Delta H_a \) is the enthalpy of enzyme activation (cal mol\(^{-1}\)), \(\Delta H_h \) is the change in enthalpy at high temperature (cal mol\(^{-1}\)), and \(T_h \) is the high temperature at which enzyme is half active.

2.2 Survival Rate

The survivorship of different stages was calculated by Wang model [8]. The Wang model is

\[m(T) = \frac{1}{1 + e^{\left(T - T_{opt} \right) / B} \left[1 + e^{\left(-T_{opt} - T \right) / B} \right] \times H} \]

where, \(m(T) \) is the rate of mortality at temperature \(T \) (°C), \(T_{opt} \) is the optimum temperature for survival (°C), and \(B \) is the boundary width at the upper and lower temperatures and \(H \) is the value of the upper asymptote of the curve.

The temperature dependence of mortality was described using a second order exponential polynomial function. The following polynomial model expression was used [9,10].

\[m(T) = a + bT + cT^2 \]

2.3 Adult Life Span
Adults’ mean survival time was recorded for both sexes. To predict the relationship between adult senescence rate and temperature, a modified Stinner model [4] was fitted. The model is

\[
r(T) = \frac{c_1}{1 + e(k_1 + k_2 \cdot T)} + \frac{c_2}{1 + e(k_1 + k_2(2 \cdot T_0 - T))}
\]

Where, \(r(T) \) is the senescence rate at temperature \(T \) (°C), \(T_0 \) is the optimum temperature (°C), \(c_1 \) and \(c_2 \) are the maximum and minimum temperatures (°C) when \(T \leq T_0 \) and \(T > T_0 \), respectively, and \(k_1 \) and \(k_2 \) are constants.

2.4 Reproduction Rate

To determine the influence of temperature on the total number of eggs laid per female, a Gaussian equation [11] was used. The model’s expression is

\[
r(T) = R_{\text{max}} \exp \left[-\frac{1}{2} \left(\frac{T - T_{\text{max}}}{k} \right)^2 \right]
\]

Where, \(r(T) \) denotes the development rate at temperature \(T \) (°C), \(R_{\text{max}} \) denotes the maximum development rate, \(T_{\text{max}} \) denotes the temperature (°C) at which the maximum development rate occurs, and \(k \) denotes the steepness of this equation.

2.5 Statistical criteria

Akaike Information Criteria (AIC) = 2k-2 ln(L)

MAPE = \(\frac{100}{N} \sum \frac{\text{Actual} - \text{Predicted}}{\text{Predicted}} \)

MAE = \(\sum \frac{|\text{Actual} - \text{Predicted}|}{\text{Predicted}} \)

RMSE = \(\sqrt{\frac{\sum (\text{Actual} - \text{Predicted})^2}{N}} \)

RSE = \(\sqrt{\frac{\sum (\text{Actual} - \text{Predicted})^2}{\sum (\text{Actual} - \text{Actual})}} \)

RAE = \(\frac{\sum |\text{Actual} - \text{Predicted}|}{\sum |\text{Actual} - \text{Actual}|} \)

3. RESULTS AND DISCUSSION

P. solenopsis has the development day for 1 instar is 3-12 days, 2 instar have 3-10 days, 3 instar have 3-9 days, male have 3-8 days, female have 3-7 days. Mean developmental days for 1 instar, 2 instar, 3 instar, male and female have 6±0.174, 5.8±0.134, 4.9±0.112, 5.9±0.16, 4.8±0.101 respectively. The survival of first and third instars was the same percentage of survived (71.4%), the second instar had only 45.5% survived, and females survived 92.7%, male survived 89.9%. Fecundity mean is 199.7905±3.479603 with 132-278 crawlers per female.

3.1 Development rate
From the modified Sharpe and DeMichele model for nymph 1, 2, 3 developments were increased 20°C to 30°C; from 30°C, development rate was decreased slowly. For the adult male development rate as increased up to 40°C; higher than 40°C, development was dropped (fig 1). When all life stages are considered, males have a high coefficient of determination (R^2) (table 1). Also male have the low error values (Table 1). So it is the best fit model.

Fig 1: a) 1 instar b) 2 instar c) 3 instar d) male developmental rate based on different temperature by using Sharpe and DeMichele model at 95% confidence interval.

<table>
<thead>
<tr>
<th>Life Stage</th>
<th>Intercept</th>
<th>Slope</th>
<th>R^2</th>
<th>AIC</th>
<th>MAPE</th>
<th>MAE</th>
<th>RMSE</th>
<th>RSE</th>
<th>RAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nymph 1</td>
<td>7.18305</td>
<td>0.160190</td>
<td>0.295712</td>
<td>39.55</td>
<td>71385</td>
<td>1.299170</td>
<td>1.500847</td>
<td>0.7042879</td>
<td>0.8771512</td>
</tr>
<tr>
<td>Nymph 2</td>
<td>98728</td>
<td>0.125919</td>
<td>0.237741</td>
<td>38.26</td>
<td>0.1174413</td>
<td>1.184547</td>
<td>1.368836</td>
<td>0.7622593</td>
<td>0.8949200</td>
</tr>
<tr>
<td>Nymph 3</td>
<td>6.016817</td>
<td>0.116634</td>
<td>0.368199</td>
<td>32.81</td>
<td>0.0906009</td>
<td>0.806868</td>
<td>0.9275466</td>
<td>0.6318014</td>
<td>0.8957560</td>
</tr>
<tr>
<td>Male</td>
<td>2.81313</td>
<td>0.154484</td>
<td>0.917975</td>
<td>16.06</td>
<td>0.0349341</td>
<td>0.243883</td>
<td>0.2803518</td>
<td>0.0820253</td>
<td>0.317278</td>
</tr>
</tbody>
</table>

3.2 Mortality rate:

From the wang model for all the life stages like nymph 1, 2, 3, male and female, mortality was slowly increased until 38°C. After 38°C, mortality was increased rapidly (Fig 2). All life stages were approximately equal coefficient of determination (R^2). But compared to all life stages, nymph 3 has a slightly higher coefficient of determination (R^2). So it is the best fit model. Based on the error values male have lowest error values (Table 2).

Fig 2: a) 1 instar b) 2 instar c) 3 instar d) male e) female mortality based on different temperature by using Wang model at 95% confidence interval.
Table 2: In Wang model for the different life stages error measuring statistical tools.

<table>
<thead>
<tr>
<th>Life Stage</th>
<th>Intercept</th>
<th>Slope</th>
<th>R^2</th>
<th>AIC</th>
<th>MAPE</th>
<th>MAE</th>
<th>RMSE</th>
<th>RSE</th>
<th>RAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nymph 1</td>
<td>0.579303</td>
<td>0.004292</td>
<td>0.908482</td>
<td>-33.27</td>
<td>0.010245</td>
<td>0.007263</td>
<td>0.008269</td>
<td>0.091518</td>
<td>0.329632</td>
</tr>
<tr>
<td>Nymph 2</td>
<td>0.556773</td>
<td>0.004349</td>
<td>0.907216</td>
<td>-32.97</td>
<td>0.010779</td>
<td>0.007419</td>
<td>0.008444</td>
<td>0.092796</td>
<td>0.332325</td>
</tr>
<tr>
<td>Nymph 3</td>
<td>0.596211</td>
<td>0.004238</td>
<td>0.909465</td>
<td>-33.53</td>
<td>0.021076</td>
<td>0.015294</td>
<td>0.017317</td>
<td>0.412016</td>
<td>0.702727</td>
</tr>
<tr>
<td>Male</td>
<td>0.590613</td>
<td>0.004257</td>
<td>0.909136</td>
<td>-33.44</td>
<td>0.009976</td>
<td>0.007174</td>
<td>0.008170</td>
<td>0.090864</td>
<td>0.32823</td>
</tr>
<tr>
<td>Female</td>
<td>0.584947</td>
<td>0.004275</td>
<td>0.908807</td>
<td>-33.35</td>
<td>0.010111</td>
<td>0.00722</td>
<td>0.008221</td>
<td>0.091193</td>
<td>0.328935</td>
</tr>
</tbody>
</table>

From the polynomial model for nymph 1 have mortality rate been decreased with increased temperature until 35°C; for 40°C it maintain to the 35°C level. Other stages were decreased rapidly from 20°C to 40°C (Fig 3). Males have the highest coefficient of determination and mostly the lowest values of error (Table 3). So it is the best fit model.

Fig 3: a) 1 instar b) 2 instar c) 3 instar d) male e) female mortality based on different temperature by using Polynomial model at 95% confidence interval.
Table 3: In a polynomial model for the different life stages error-measuring statistical tools.

<table>
<thead>
<tr>
<th>Life Stage</th>
<th>Intercept</th>
<th>Slope ((b,c))</th>
<th>(R^2)</th>
<th>AIC</th>
<th>MAPE</th>
<th>MAE</th>
<th>RMSE</th>
<th>RSE</th>
<th>RAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nymph 1</td>
<td>27.186</td>
<td>(-1.201, 0.0155)</td>
<td>0.8492</td>
<td>27.52</td>
<td>0.104991</td>
<td>0.559265</td>
<td>0.635658</td>
<td>0.129886</td>
<td>0.400076</td>
</tr>
<tr>
<td>Nymph 2</td>
<td>15.202</td>
<td>(-0.4315, 0.0038)</td>
<td>0.7666</td>
<td>7.84</td>
<td>0.024884</td>
<td>0.137110</td>
<td>0.155839</td>
<td>0.015662</td>
<td>0.135963</td>
</tr>
<tr>
<td>Nymph 3</td>
<td>14.042</td>
<td>(-0.4552, 0.0049)</td>
<td>0.8063</td>
<td>11.4</td>
<td>0.036881</td>
<td>0.176800</td>
<td>0.200950</td>
<td>0.040457</td>
<td>0.218603</td>
</tr>
<tr>
<td>Male</td>
<td>12.38</td>
<td>(-0.3508, 0.0032)</td>
<td>0.9023</td>
<td>5.43</td>
<td>0.024894</td>
<td>0.115461</td>
<td>0.131233</td>
<td>0.018192</td>
<td>0.146494</td>
</tr>
<tr>
<td>Female</td>
<td>6.899</td>
<td>(0.195, -0.0073)</td>
<td>0.7652</td>
<td>16.98</td>
<td>0.082681</td>
<td>0.415943</td>
<td>0.467868</td>
<td>0.096602</td>
<td>0.341294</td>
</tr>
</tbody>
</table>

3.3 Reproduction rate:
Temperature has a substantial influence on the reproductive life of mealy bug, according to the findings. As female life spans fell due to rising temperatures, the reproductive period shortened. Maximum fecundity occurs at 30°C. Fecundity rate based on
Gaussian equation at 20°C was very low. From 25°C to 30°C, fecundity rate was increased continuously. After 30°C it was decreased. At 40°C it was very low (Fig 4). It has very low coefficient of determination and the highest values of error (Table 4).

Fig 4: Fecundity rate based on different temperature by using Gaussian model at 95% confidence interval

Table 4: In a Gaussian model for the different life stages error-measuring statistical tools.

<table>
<thead>
<tr>
<th>Life Stage</th>
<th>Intercept</th>
<th>Slope</th>
<th>R²</th>
<th>AIC</th>
<th>MAPE</th>
<th>MAE</th>
<th>RMSE</th>
<th>RSE</th>
<th>RAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>fecundity</td>
<td>77.41998</td>
<td>0.749865</td>
<td>0.002112</td>
<td>136.2032</td>
<td>91.29613</td>
<td>98.94862</td>
<td>0.997888</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

4. CONCLUSION
In this work, six distinct empirical models were utilized to assess mealy bug development, survival, adult life span, reproduction rate. The top empirical models were identified using statistical methods such as R², MAPE, MAE, RMSE, RSE AND RAE. When compared to all the other models, the polynomial model has the higher coefficient of determination (R²) with the lowest MAPE, MAE, RMSE, RAE, AND RSE (table 5). So the polynomial was the best fit model.

TABLE 5: ANALOGY STUDY OF DIFFERENT EMPIRICAL MODELS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>INTERCEPT</th>
<th>SLOPE</th>
<th>R²</th>
<th>MAPE</th>
<th>MAE</th>
<th>RMSE</th>
<th>RSE</th>
<th>RAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharpe and Demichele model</td>
<td>5.779245</td>
<td>0.139307</td>
<td>0.147005</td>
<td>4.43175</td>
<td>4.678931</td>
<td>5.355706</td>
<td>5.895229</td>
<td>2.507105</td>
</tr>
<tr>
<td>Wang Model</td>
<td>0.581569</td>
<td>0.004282</td>
<td>0.751237</td>
<td>7.092829</td>
<td>4.967252</td>
<td>5.240883</td>
<td>30530.79</td>
<td>209.3146</td>
</tr>
<tr>
<td>Polynomial model</td>
<td>15.14200</td>
<td>-0.4487, 0.004</td>
<td>0.819400</td>
<td>0.098156</td>
<td>0.535121</td>
<td>0.618860</td>
<td>0.194418</td>
<td>0.471144</td>
</tr>
<tr>
<td>Gaussian model</td>
<td>77.41998</td>
<td>0.749865</td>
<td>0.002112</td>
<td>136.2032</td>
<td>91.29613</td>
<td>98.94862</td>
<td>0.997888</td>
<td>1</td>
</tr>
</tbody>
</table>

REFERENCES

