**IN VITRO COMPATIBILITY AND EFFICACY STUDIES OF ENTOMOPATHOGENIC FUNGI**

*Metarhizium anisopliae* (Metsh.) WITH COMMONLY USED BIORATIONAL AND CHEMICAL PESTICIDES AGAINST *Spodoptera litura* (Fabricius).

**ABSTRACT**

*In vitro* compatibility of selected entomopathogenic fungi with botanicals and chemical insecticides at field recommended concentrations Indoxacarb 14.5 SC, Spinosad 45 SC, neem oil and NSKE were non-toxic to the test strain *M. anisopliae* (Ma-L-1) as they did not show significant reduction in radial growth. The insecticide dichlorvos 76 EC (DDVP) recorded 100 per cent reduction in radial growth of test strains at field recommended concentration. The joint action of microbial agents (bacteria, viruses and fungi) revealed that the combination of pathogens did not prove superior to individual effect. All the combination of entomopathogenic fungi *M. anisopliae* (Ma-L-1) strain with microbial agents were within the critical limits of additive effect and combination with insecticides *viz.*, Spinosad 45 SC @0.009%, neem oil 5% and NSKE 5%, which produced the synergism reaction.

**Keywords:** *Metarhizium anisopliae*, Indoxacarb 14.5 SC, Spinosad 45 SC, Monocrotophos 36 SL, Chlorpyriphos 20 EC, Dichlorvos 76 EC, *Spodoptera litura*, neem oil and NSKE.

**INTRODUCTION**

Insects like other organisms are susceptible to a variety of diseases caused by viruses, bacteria, fungi, protozoans, rikettsia, phytoplasma and nematodes. Among them entomopathogenic fungi are gaining importance in the IPM schedules in recent years, although *Bacillus thuringiensis* (Bt.) and nuclear polyhedrosis viruses (NPV) are the most widely used microbials at present. More than 750 spp. of fungi from about 100 genera are pathogenic on insects, many of them offer great potential for pest management. The fungal diseases on insects are commonly referred as “mycosis”. Fungi infect insects of almost all orders, most common in Hemiptera, Diptera, Coleoptera, Lepidoptera, Orthoptera and Hymenoptera. The fungi can be used effectively in IPM under humidity (RH>70%) and moderate temperature (20-30°C) on economically important crops.

Worldwide, there is a search for locally adapted strains of entomopathogenic (bacteria, viruses, fungi) for effective management of insect pests for that particular environment. In many cases successful control of insects have been achieved by using local strains rather than exotic microorganisms (strains). So, it is assumed that local strains of microorganisms might have well adapted to that particular environment from where they are isolated and may play major role. Species of *Spodoptera* are known to be attacked by almost all groups of entomopathogens. However, considerable work has been done only with NPV, which effectively control *S. litura* on crops such as tobacco, cotton, cabbage, banana and black gram (Jayaraj, 1986). Epizootic of disease by entomopathogenic fungi *Beauveria, Metarrhizium* and *Nomuraea* spp. have been reported as on *S. litura* in India (Ranga Swami *et al.*, 1968; Zaz and Kushwaha, 1983). Though in nature mixed infection of two or more entomopathogens is common, researchers have so far concentrated only on testing their individual efficacy. The control achieved by using entomopathogens individually is quite satisfactory in some cases and in some others it is not so encouraging, since these pathogens are greatly influenced by the environmental factors. Although pathogen have been widely tested individually. However, very few such studies have been conducted to evaluate their efficacy in
combination. Conceivably, such a combination could be advantageous when more than one species of lepidopterous pest occur on the same crop simultaneously. There is also a possibility that two pathogens might interact synergistically, one pathogen may predispose the pest species for higher degree of infectivity by another pathogen or they may act as supplementary and complimentary to one another or they may be antagonistic to one another (Falcon, 1973). The utility of microorganisms and other bio-control agents are over emphasized in Bio-intensive Integrated Pest Management (IPM). More over the compatibility between microorganisms and chemical pesticides are also criteria for using them in IPM.

MATERIAL AND METHODS

In vitro compatibility of selected entomopathogenic fungi with botanicals and chemical insecticides against Spodoptera litura.

Compatibility of selected entomopathogenic fungal isolate of M. anisopliae (Ma-L-1) with selected insecticides

The commonly used insecticides were tested in vitro for their inhibitory effect, if any on selected entomopathogenic fungal isolate of M. anisopliae in terms of radial growth following Poison Food Technique (Nene and Thapliyal, 1993). The insecticides and their concentrations tested in this experiment are Indoxacarb 14.5 SC -0.0045 per cent, Spinosad 45 SC -0.018 per cent, Monocrotophos 36 SL -0.310 per cent, Chlorpyriphos 20 -0.050 percent, Dichlorvos 76 EC (DDVP)-0.120 percent, Endosulfan 35 EC -0.350 per cent, Neemoil-5 per cent. Each test insecticide at field recommended concentration was tested with five replications.

Incorporation of test insecticides into the media

Sterilized SDAY medium was melted and cooled but before solidification, the test insecticides at field recommended concentration, Indoxacarb 14.5 SC -0.0045 per cent, Spinosad 45 SC -0.018 per cent, Monocrotophos 36 SL -0.310 per cent, Chlorpyriphos 20 EC -0.050 per cent, Diclorovos 76 EC (DDVP)-0.120 per cent, Endosulfan 36 EC -0.350 percent, Neemoil-5 percent were added treatment wise by using micropipette. The medium was shaken vigorously for even mixing of the contents and poured into sterile petriplates of 9.5 x 1.5 cm. hundred ml medium was poured evenly in five plates and allowed to solidify for further tests.

Inoculation of the medium with mycelial mat

Circular discs of 10 mm diameter were cut from vigorously grown culture of M. anisopliae using a sterile cork borer and such discs were placed in the middle of each petriplate on the medium mixed with insecticide. Medium inoculated with the fungus without insecticide served as untreated control. These steps were carried out under aseptic conditions inside an inoculation chamber sterilized with UV radiation. These plates were incubated at 25 ± 1°C for 10 days.

Radial growth of the fungus was measured after 10 days and compared with untreated control. The number of conidia per unit area and viability of conidia were also recorded following the procedures mentioned in earlier experiment and compared with untreated control using the formula.

C - T
\[ R = \frac{\text{C}}{\text{T}} \times 100 \]

Where,

\( R \) = Per cent reduction of radial growth / conidia per unit area / conidial viability.

\( C \) = Radial growth / conidia per unit area / Conidial viability of fungi grown on control or untreated medium.

\( T \) = Radial growth / conidia per unit area / conidial viability of fungi grown on insecticide treated medium.

**Joint action of microbial, botanical and chemical insecticides with selected entomopathogenic fungal isolates.**

**Isolation, purification, mass multiplication and maintenance of Sl. NPV**

*Spodoptera* NPV cultures were obtained from Project Directorate of Biological Control (P.D.B.C.), Bangalore. Mass multiplication of nuclear polyhedrosis virus was done on larvae of *S. litura*. Castor leaf dipped in viral suspension of \( 1 \times 10^6 \) PIBs/ml were fed to the third instar larvae of *S. litura* for 24 hours, later transferred to fresh semi-synthetic diet individually in glass vials. Larvae were reared on diet till development of disease. Diseased larvae were collected and stored in distilled water in 100 ml of conical flask and allowed to putrefy for 15 days. The putrefied larvae were macerated using the glass rod and then filtered through double layer muslin cloth twice. The PIBs were purified by alternate cycle of low (250-500 g rpm for 5-10 min) and high (5000-7000 g rpm for 30-60 min) speed centrifugation. The PIBs was stored at 4ºC in the refrigerator for further use.

**Mass Multiplication of standard isolate of Bacillus thuringiensis (HD-1)**

The bacterial culture (HD-1) was collected from the Department of Plant Protection, Sam Higginbottom Institute of Agriculture Technology and sciences, Allahabad. *Bacillus thuringiensis* easily produced on artificial media by adopting conventional fermentation techniques either on surface or semi solid fermentation or submerged fermentation. strains from diseased insects is isolated as follow, the non-spore forming bacteria are eliminated by heating 60°C for 50 minutes, the growth of other spore forming is reduced by addition of 50μg/ml polymedium B to the nutrient agar medium. The slant culture of pure *Bacillus thuringiensis* (HD-1) is transferred into 300ml of polymedium (Pepton 0.5%, Glycerol 1%, Yeast extract 1%, Beef extract 0.5% and NaCl 0.3% with pH adjusted to 7.2) in 500ml flask. The incubation is done at 32°C in an incubation shaker for 48hrs. Once the incubation is completed the whole content is transferred to fermentor of 15 litres capacity containing 10 liter of presterilized poly-media. The inoculated medium is incubated in the fermentor for 72hrs. for further sealing of production 15 litre of growing culture is added to 300 litre capacity fermentor. The spore count of the fermented liquor should be \( 2.5 \times 10^9 \) spore/ml. The content of each fermented aseptically centrifuged at 5000 rpm for 10-15 minutes. The sedimentation is washed 3 times with distilled water and transferred to small quantity of polymedium, vacuum dried and concentrated into powder and then packed Carozzi et al., (1991).

**Preparation of Neem seed kernel extract (NSKE-5%)**

Fifty grams of neem seeds were shade dried, crushed and then soaked overnight in little quantity of water. Later, the mixture was squeezed through muslin cloth and the volume was made upto one liter so as to obtain 5% solution. The tests were conducted on the third instar larvae of *S.
litura using LC$_{50}$ and LC$_{25}$ combinations of entomopathogens and recommended dose and half recommended dose of neem oil, NSKE and spinosad (45 SC).

**Fungus (B. bassiana (Bb-L-2) and M. anisopliae (Ma-L-1)) and Bacillus thuringiensis (HD-1)**

Larvae of uniform age and size from the laboratory cultures were used for this study. Four combinations of concentrations were used for infecting the larvae. Healthy, third instar larvae were sprayed with conidial suspension and later, the larvae were allowed to feed on leaf treated with desired concentration of Bacillus thuringiensis. Observation on per cent mortality was observed daily up to ten days after the treatment.

**Fungus M. anisopliae (Ma-L-1) and SI NPV**

The respective conidial suspensions were sprayed on third instar larvae of S litura and later allowed the larvae to feed on leaf dipped in desirable concentration of NPV. Four combination of concentration were tried using effective lethal concentration, LC$_{50}$ and LC$_{25}$.

**M. anisopliae (Ma-L-1) and neem oil, NSKE and spinosad (45 SC)**

The respective conidial suspensions and insecticides were sprayed on third instar larvae of S. litura. The following formula was used to determine expected mortality, if the two pathogens acted independently of each other.

$$E = (Ob + Os) - ((Ob \times Os) / 100))$$

Where,

- E = per cent expected mortality.
- Ob = Observed percentage mortality produced by one pathogen.
- Os = Observed percentage mortality produced by another pathogen.

Chi-square test

$$X^2 = (Oc - E)^2 / E$$

Where,

- Oc = Observed percentage mortality from the combination
- E = per cent expected value

The calculated Chi-square value were compared to the Chi-square table value for 1 degree of freedom P=0.05. If the table value exceeded the calculated, it was concluded that the observed mortality for the combination of pathogen was within the range expected from an additive effect. If the calculated value exceeded the table value, a synergistic reaction between the pathogen was suspected (Finney, 1964).

**RESULTS AND DISCUSSION**

**In vitro compatibility of with selected insecticides on radial growth of entomopathogenic fungi M. anisopliae (Ma-L-1)**

The toxic effect of six insecticides *viz.* Indoxacarb 14.5 SC, Spinosad 45 SC, monocrotophos 36 SL, chlorpyriphos 20 EC, diclorovos 76 EC and Endosulfan 36 EC and two neem formulations was tested on the radial growth of the selected test strains of M. anisopliae (Ma-L-1). The radial growth
recorded by strain Ma-L-1 on insecticides Indoxacarb 14.5 SC and Spinosad 45 SC contaminated media were 5.74 and 5.76 cm, respectively which were on par with control (5.79 cm) while monocrotophos 36 SL, chlorpyriphos 20 EC, dicrolovos 76 EC and Endosulfan 36 EC recorded 2.16, 1.59, 0 and 2.27 cm radial growth respectively, with 62.73, 72.40, 100 and 60.83 per cent growth reduction respectively, radial growth which was significantly lower compared to control. While dicrolovos 76 EC brought out 100 per cent growth reduction in compared to control (Table 1). Neem products such as neem oil and NSKE at 5% concentration caused varying level of colony inhibition of M. anisopliae. Neem oil affected the radial growth (14.16 % reduction) while NSKE effected the radial growth (7.77 %) (Table 1), significant reduction in radial growth of Ma-L-1 due to neem products compared with chemical insecticides was not observed. The results of the present study suggest that the insecticides Spinosad 45 SC and Indoxacarb 14.5 SC can be used with M. anisopliae in pest management. This combination would give an added advantage where the insecticide pathogen mixtures.

<table>
<thead>
<tr>
<th>Insecticides</th>
<th>Concentration (%)</th>
<th>Radial growth (cm) after 10 days</th>
<th>Per cent inhibition over control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoxacarb 14.5% SC</td>
<td>0.0045</td>
<td>5.74&lt;sup&gt;c&lt;/sup&gt;</td>
<td>0.86</td>
</tr>
<tr>
<td>Spinosad 45% SC</td>
<td>0.018</td>
<td>5.76&lt;sup&gt;b&lt;/sup&gt;</td>
<td>0.52</td>
</tr>
<tr>
<td>Monocrotophos 36% SL</td>
<td>0.310</td>
<td>2.16&lt;sup&gt;f&lt;/sup&gt;</td>
<td>62.73</td>
</tr>
<tr>
<td>Chlorpyriphos 20% EC</td>
<td>0.050</td>
<td>1.59&lt;sup&gt;b&lt;/sup&gt;</td>
<td>72.40</td>
</tr>
<tr>
<td>Dicrolovos 75% EC (DDVP)</td>
<td>0.120</td>
<td>0&lt;sup&gt;i&lt;/sup&gt;</td>
<td>100</td>
</tr>
<tr>
<td>Endosulfan 36% EC</td>
<td>0.350</td>
<td>2.27&lt;sup&gt;f&lt;/sup&gt;</td>
<td>60.83</td>
</tr>
<tr>
<td>Neem oil 5%</td>
<td>5</td>
<td>3.27&lt;sup&gt;e&lt;/sup&gt;</td>
<td>43.52</td>
</tr>
<tr>
<td>NSKE 5%</td>
<td>5</td>
<td>3.74&lt;sup&gt;d&lt;/sup&gt;</td>
<td>35.40</td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>5.79&lt;sup&gt;a&lt;/sup&gt;</td>
<td>0</td>
</tr>
<tr>
<td>SE(m) ± CD (0.01)</td>
<td></td>
<td>0.025</td>
<td>0.072</td>
</tr>
</tbody>
</table>

Figures indicated by same letters are not significantly different from one another as per DMRT

Haseeb (2009) revealed that the growth of test fungus strongly inhibited by insecticides by insecticides in descending order were chlorpyriphos, endosulfan, malathion, methyl parathion, monocrotophos and fenvelerate (72.7-94.6 % reduction in growth dia.) while dimethoate affected growth 32.3 % reduction and compatibility of six strains of B.bassiana with four commonly used insecticides, viz., imidacloprid, spinosad, indoxacarb and chlorpyriphos. All the strains were compatible with imidacloprid, spinosad and indoxacarb. Chlorpyriphos was found to be highly incompatible with all the strains of B.bassiana and exhibited high inhibition of growth (Rajanikanth et al., 2010).

**In vitro compatibility of selected entomopathogenic fungi M. anisopliae (Ma-L-1) with botanicals and chemical insecticides against Spodoptera litura.**
Joint action of *M. anisopliae* (Ma-L-1) and *Sl. NPV* on third larval instar of *S. litura*

The *M. anisopliae* (Ma-L-1) and *Sl. NPV* at LC$_{50}$ tested against the third instar larvae of test species individually caused 47.91 cent and 57.33 per cent mortality and at LC$_{25}$ mortality obtained was 20.14 per cent and 27.61 per cent, respectively (Table 2).

Simultaneous exposure of *M. anisopliae* (Ma-L-1) and *Sl. NPV* at LC$_{50}$ each resulted in 63.81 per cent mortality. The expected mortality was 77.77 per cent. Combination of LC$_{50}$ of *M. anisopliae* (Ma-L-1) and LC$_{25}$ of *Sl. NPV* and vice versa, showed 47.91 per cent and 51.33 per cent mortality, respectively. Mixture of *M. anisopliae* (Ma-L-1) and *Sl. NPV* at LC$_{25}$ each, resulted in 34.27 mortality and expected mortality for the same was 42.19 per cent (Table 3).

**Table 2** Percent mortality of *S. litura* larvae observed at different concentrations of selected entomopathogens and insecticides.

<table>
<thead>
<tr>
<th>Insecticides</th>
<th>Dose</th>
<th>% Mean mortality (after 10 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Beauveria bassiana</strong> (Bb-L-2)</td>
<td>LC$_{50}$</td>
<td>45.44</td>
</tr>
<tr>
<td></td>
<td>LC$_{25}$</td>
<td>27.08</td>
</tr>
<tr>
<td><strong>Metarhizium anisopliae</strong> (Ma-L-1)</td>
<td>LC$_{50}$</td>
<td>47.91</td>
</tr>
<tr>
<td></td>
<td>LC$_{25}$</td>
<td>20.14</td>
</tr>
<tr>
<td><strong>Bacillus thuringiensis</strong> (HD-1)</td>
<td>LC$_{50}$</td>
<td>53.33</td>
</tr>
<tr>
<td></td>
<td>LC$_{25}$</td>
<td>25.66</td>
</tr>
<tr>
<td><strong>Spodoptera NPV</strong></td>
<td>LC$_{50}$</td>
<td>57.33</td>
</tr>
<tr>
<td></td>
<td>LC$_{25}$</td>
<td>27.61</td>
</tr>
<tr>
<td><strong>Spinosad (Tracer 45 SC)</strong></td>
<td>RD (Recommended dose)</td>
<td>94.52</td>
</tr>
<tr>
<td></td>
<td>1/2 RD (Recommended dose)</td>
<td>68.31</td>
</tr>
<tr>
<td><strong>Neem oil</strong></td>
<td>RD (Recommended dose)</td>
<td>34.27</td>
</tr>
<tr>
<td></td>
<td>1/2 RD (Recommended dose)</td>
<td>20.18</td>
</tr>
<tr>
<td><strong>NSKE (Neem seed kernal extract)</strong></td>
<td>RD (Recommended dose)</td>
<td>29.33</td>
</tr>
<tr>
<td></td>
<td>1/2 RD (Recommended dose)</td>
<td>17.83</td>
</tr>
</tbody>
</table>

*B. bassiana* (Bb-L-2): LC$_{50}$ = 5.0 x 10$^6$ conidia/ml & LC$_{25}$ = 2.0 x 10$^6$ conidia/ml  
*M. anisopliae* (Ma-L-1): LC$_{50}$ = 1.6 x 10$^6$ conidia/ml & LC$_{25}$ = 1.2 x 10$^6$ conidia/ml  
*Bacillus thuringiensis* (HD-1): LC$_{50}$ = 3.5 x 10$^6$ spore/ml & LC$_{25}$ = 2.9 x 10$^5$ spore/ml  
*Spodoptera NPV*: LC$_{50}$ = 4.2 x 10$^4$ PIBs/ml & LC$_{25}$ = 3.3 x 10$^3$ PIBs/ml  
Spinosad (Tracer 45 SC): RD (Recommended dose) = 0.018 & 1/2 RD (Recommended dose) = 0.009%  
Neem oil: RD (Recommended dose) = 5% & 1/2 RD (Recommended dose) = 2.5%  
NSKE (Neem seed kernal extract): RD (Recommended dose) = 5% & 1/2 RD (Recommended dose) = 2.5%

**Table 3** Joint action of *M. anisopliae* (Ma-L-1) and *Sl. NPV* on third larval instar of *S. litura*

<table>
<thead>
<tr>
<th>Combination</th>
<th>Expected per cent mortality</th>
<th>Per cent mortality observed</th>
<th>Chi - Square</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>M. anisopliae</em> (Ma-L-1) + <em>Sl. NPV</em> (Concentration)</td>
<td>77.77</td>
<td>63.81</td>
<td>2.09</td>
</tr>
<tr>
<td>Combination</td>
<td>Expected per cent mortality</td>
<td>Per cent mortality observed</td>
<td>Chi - Square</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LC₂₅ + LC₅₀</td>
<td>62.29</td>
<td>47.91</td>
<td>2.46</td>
</tr>
<tr>
<td>LC₅₀ + LC₂₅</td>
<td>65.92</td>
<td>51.33</td>
<td>1.70</td>
</tr>
<tr>
<td>LC₂₅ + LC₂₅</td>
<td>42.19</td>
<td>34.27</td>
<td>1.56</td>
</tr>
</tbody>
</table>

Spodoptera NPV: LC₅₀ = 4.2 x 10⁶ PIBs/ml & LC₂₅ = 3.3 x 10⁷ PIBs/ml
M. anisopliae (Ma-L-1): LC₅₀ = 1.6 x 10⁶ conidia/ml & LC₂₅ = 1.2 x 10⁶ conidia/ml

Joint action of *Spodoptera NPV* and *B. thuringiensis* (HD-1) on third larval instar of *S. litura*

At the higher dosage levels (LC₅₀) tested *Spodoptera NPV* and *B. thuringiensis* (HD-1) individually caused 57.33 per cent and 53.33 per cent mortality, respectively. The same pathogens at LC₂₅ showed 27.61 per cent and 25.66 per cent mortality, respectively (Table 4). The *Spodoptera NPV* and *B. thuringiensis* (HD-1) mixtures at LC₅₀ each resulted in 65.57 per cent mortality (Table 25). Combination of LC₅₀ of *Spodoptera NPV* and LC₂₅ of *B. thuringiensis* (HD-1) and vice versa resulted in 63.33 per cent and 54.45 per cent mortality. Simultaneous exposure of *Spodoptera NPV* and *B. thuringiensis* (HD-1) to test species at LC₂₅ each showed 35.26 per cent kill and the mortality expected from the same combination was 46.18 per cent.

| Table 4 Joint action of *Spodoptera NPV* and *B. thuringiensis* (HD-1) on third larval instar of *S. litura* |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Combination                                                   | Expected per cent mortality | Per cent mortality observed | Chi - Square |
| Spodoptera NPV + B. thuringiensis (HD-1) (Concentration)     |                                        |                            |              |
| LC₅₀ + LC₅₀                                                  | 80.09                        | 65.57                       | 2.28         |
| LC₅₀ + LC₂₅                                                  | 68.29                        | 63.33                       | 0.36         |
| LC₂₅ + LC₅₀                                                  | 66.22                        | 54.45                       | 2.09         |
| LC₂₅ + LC₂₅                                                  | 46.18                        | 35.26                       | 2.58         |

*Spodoptera NPV*: LC₅₀ = 4.2 x 10⁶ PIBs/ml & LC₂₅ = 3.3 x 10⁷ PIBs/ml
*Bacillus thuringiensis* (HD-1): LC₅₀ = 3.5 x 10⁶ spore/ml & LC₂₅ = 2.9 x 10⁶ spore/ml

Joint action of *M. anisopliae* (Ma-L-1) and *B. thuringiensis* (HD-1) on *S. litura*

At the higher dosage (LC₅₀) levels tested *M. anisopliae* (Ma-L-1) and *B. thuringiensis* (HD-1) individually caused 47.91 per cent and 53.33 per cent mortality (Table 2). The combination of these two pathogens at LC₅₀ each caused 63.33 per cent mortality (Table 5). The expected mortality from such combination was 75.68. The lower dosage levels (LC₂₅) of *M. anisopliae* (Ma-L-1) and *B. thuringiensis* (HD-1) resulted in 20.14 per cent and 25.66 per cent, respectively. Simultaneous exposure of *M. anisopliae* (Ma-L-1) at LC₅₀ and *B. thuringiensis* (HD-1) at LC₂₅ and vice versa, resulted in 56.60 per cent and 53.33 per cent mortality, whereas the expected mortality from such combination was 61.27 and 62.73 per cent, respectively. Combination of *M. anisopliae* (Ma-L-1) and *B. thuringiensis* (HD-1) at LC₂₅ each cause 30.00 per cent mortality, where as the expected mortality from such mixture was 40.63 per cent (Table 5).

| Table 5 Joint action of *M. anisopliae* (Ma-L-1) and *B. thuringiensis* (HD-1) on *S. litura* |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Combination                                                   | Expected per cent mortality | Per cent mortality observed | Chi - Square |
| M. anisopliae (Ma-L-1) + B. thuringiensis (HD-1) (Concentration) |                                        |                            |              |
| LC₅₀ + LC₅₀                                                  | 75.68                        | 63.33                       | 2.01         |
Bacillus thuringiensis (HD-1) : LC\textsubscript{50} = 3.5 \times 10^4 \text{ spore/ml} & LC\textsubscript{25} = 2.9 \times 10^3 \text{ spore/ml} \\
M. anisopliae (Ma-L-1) : LC\textsubscript{50} = 1.6 \times 10^6 \text{ conidia/ml} & LC\textsubscript{25} = 1.2 \times 10^4 \text{ conidia/ml}

The treatment involving different combinations of microbial pathogens, the Chi-square value was less than the table Chi-square. Hence, it was concluded that per cent observed mortality for the combinations were within the range expected from the additive effects. None of the combinations showed either antagonistic or synergistic effect and the results are concurrent with the findings of Oatman \textit{et al.} (1970) who reported that \textit{B. thuringiensis} and NPV combination used against the corn earworm, \textit{Heliothis zea} proved less effective than the virus alone. However, in laboratory experiments by Chancey \textit{et al.} (1973) indicated that combination of NPV and \textit{B. thuringiensis} against cabbage looper, \textit{Trichoplusia ni} might be unsatisfactory and detrimental to the pathogenic action of the NPV. Many of these studies have involved simultaneous infection between unrelated pathogenic bacteria, fungi, microsporidian and viral interaction, (Fuxa, 1979; McVay \textit{et al.}, 1977) and Manjula and Padmavathamma (1996) recorded no significant reduction of \textit{M. testulalis} larvae in redgram ecosystem by combination of NPV and \textit{B. bassiana}.

The present findings contradicted with the results reported by Bird (1959) Synergistic response between insect pathogens has been reported by one of the first reports of more than one insect virus simultaneously infecting susceptible host larvae was documented, in which he described a double infection in \textit{Choritoneura fumiferana} by granulosis virus (GV) and nuclear polyhedrosis virus (NPV). Tanada, (1959) reported that synergism occurred when GV and NPV of the armyworm, \textit{Pseudaletia unipuncta} were administered together. Similarly, Lowe and Paschke (1968) reported that an additive effect occurred only when a GV and NPV were simultaneously administered to the cabbage looper. \textit{Trichoplusia ni}. Double infection by different types of pathogens in the laboratory has resulted in increased mortality (Katagiri and Iwata. 1976). Mattu and Zohdy (1981) found the NPV and \textit{B. thuringiensis} (Bactospeine) produced an antagonistic effect in \textit{H. armigera} and as the larvae increased in age; two pathogens interacted synergistically and an additive effect was observed especially when mixture contained the LC\textsubscript{50} of the bacterial pathogen.

\textbf{Joint action of \textit{M. anisopliae} (Ma-L-1) and selected insecticides on third larval instar of \textit{S. litura}}

The \textit{M. anisopliae} (Ma-L-1) tested at LC\textsubscript{50} and LC\textsubscript{25} dosage and Spinosad 45 SC tested at recommended dose and half recommended dose individually caused 47.91, 20.14, 94.52 and 68.31 per cent mortality and simultaneous exposure of \textit{M. anisopliae} (Ma-L-1) and Spinosad 45 SC against the test insect with four different dose combinations (LC\textsubscript{50} dose of \textit{M. anisopliae} (Ma-L-1) and recommended dose of Spinosad 45 SC, LC\textsubscript{50} dose of \textit{M. anisopliae} (Ma-L-1) and half recommended dose of Spinosad 45 SC, LC\textsubscript{25} dose of \textit{M. anisopliae} (Ma-L-1) and recommended dose of Spinosad 45 SC, LC\textsubscript{25} dose of \textit{M. anisopliae} (Ma-L-1) and half recommended dose of spinosad 45 SC) showed 100, 100, 100 and 96.31 per cent mortality with four different dose combinations (Table 6).

\textbf{Table 6 Joint action of \textit{M. anisopliae} (Ma-L-1) and Spinosad on \textit{S. litura}}

<table>
<thead>
<tr>
<th>Combination</th>
<th>Per cent mortality observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{M. anisopliae} (Ma-L-1) + Spinosad (Tracer 45 SC) (Concentration)</td>
<td></td>
</tr>
</tbody>
</table>

The present findings contradicted with the results reported by Bird (1959) Synergistic response between insect pathogens has been reported by one of the first reports of more than one insect virus simultaneously infecting susceptible host larvae was documented, in which he described a double infection in \textit{Choritoneura fumiferana} by granulosis virus (GV) and nuclear polyhedrosis virus (NPV). Tanada, (1959) reported that synergism occurred when GV and NPV of the armyworm, \textit{Pseudaletia unipuncta} were administered together. Similarly, Lowe and Paschke (1968) reported that an additive effect occurred only when a GV and NPV were simultaneously administered to the cabbage looper. \textit{Trichoplusia ni}. Double infection by different types of pathogens in the laboratory has resulted in increased mortality (Katagiri and Iwata. 1976). Mattu and Zohdy (1981) found the NPV and \textit{B. thuringiensis} (Bactospeine) produced an antagonistic effect in \textit{H. armigera} and as the larvae increased in age; two pathogens interacted synergistically and an additive effect was observed especially when mixture contained the LC\textsubscript{50} of the bacterial pathogen.
**Table 7 Joint action of *M. anisopliae* (Ma-L-1) and Neem oil on *S. litura***

<table>
<thead>
<tr>
<th>Combination</th>
<th>Per cent mortality observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC&lt;sub&gt;50&lt;/sub&gt; + R.D</td>
<td>49.12</td>
</tr>
<tr>
<td>LC&lt;sub&gt;50&lt;/sub&gt; + ½ R.D</td>
<td>43.27</td>
</tr>
<tr>
<td>LC&lt;sub&gt;25&lt;/sub&gt; + R.D</td>
<td>41.44</td>
</tr>
<tr>
<td>LC&lt;sub&gt;25&lt;/sub&gt; + ½ R.D</td>
<td>27.08</td>
</tr>
</tbody>
</table>

*M. anisopliae* (Ma-L-1): LC<sub>50</sub> = 1.6 x 10<sup>6</sup> conidia/ml & LC<sub>25</sub> = 1.2 x 10<sup>5</sup> conidia/ml

Neem oil: RD (Recommended dose) = 5% & 1/2 RD (Recommended dose) = 2.5%

The *M. anisopliae* (Ma-L-1) tested at LC<sub>50</sub> and LC<sub>25</sub> dosage and NSKE 5% tested at recommended dose and half recommended dose individually caused 47.91, 20.14, 29.33 and 17.83 per cent mortality and simultaneous exposure of *M. anisopliae* (Ma-L-1) and NSKE against the test insect with four different dose combinations (LC<sub>50</sub> dose of *M. anisopliae* (Ma-L-1) and recommended dose of NSKE 5%, LC<sub>50</sub> dose of *M. anisopliae* (Ma-L-1) and half recommended dose of NSKE 5%, LC<sub>25</sub> dose of *M. anisopliae* (Ma-L-1) and recommended dose of NSKE 5% LC<sub>25</sub> dose of *M. anisopliae* (Ma-L-1) and half recommended dose of NSKE) showed 47.12, 44.92, 42.81 and 33.08 per cent mortality with four different dose combinations respectively (Table 8).

**Table 8 Joint action of *M. anisopliae* (Ma-L-1) and NSKE on *S. litura***

<table>
<thead>
<tr>
<th>Combination</th>
<th>Per cent mortality observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC&lt;sub&gt;50&lt;/sub&gt; + LC&lt;sub&gt;50&lt;/sub&gt;</td>
<td>47.12</td>
</tr>
<tr>
<td>LC&lt;sub&gt;50&lt;/sub&gt; + ½ R.D</td>
<td>44.92</td>
</tr>
<tr>
<td>LC&lt;sub&gt;25&lt;/sub&gt; + LC&lt;sub&gt;50&lt;/sub&gt;</td>
<td>42.81</td>
</tr>
<tr>
<td>LC&lt;sub&gt;25&lt;/sub&gt; + ½ R.D</td>
<td>33.08</td>
</tr>
</tbody>
</table>
M. anisopliae (Ma-L-1): LC$_{50}$ = 1.6 x 10$^6$ conidia/ml & LC$_{25}$ = 1.2 x 10$^5$ conidia/ml
NSKE (Neem seed kernel extract) : RD (Recommended dose) = 5% & 1/2 RD (Recommended dose) = 2.5%

Similar findings of synergism of microorganism and chemical insecticides have been very well documented (Benz, 1971; Ferron, 1978; Hukuhara et al. (1987) and Wang et al. (1994)). Similar findings of compatibility of insecticides with various entomopathogens was reported by Fargues (1975) who reported that combinations of sublethal amount of insecticides were clearly compatible with B. bassiana and use of mixtures might have advantages for Colorado potato beetle management and Georgiou (1983) reported that insecticide-pathogen combinations introduce multiple mortality factors against the pest and increasing the number of mortality factors used against insect and should delay any expression of resistance to new insecticides. Anderson et al. (1989) reported that in bioassay with neonate of Colorado potato beetle, effects B. bassiana alone were extremely variable and combination of B. bassiana with insecticides viz. Thuringiensin, Abamectin and Triflumuron were consistently more toxic than B. bassiana and Sinha (1993b), reported that a water dispersible powder formulation of neem product (Achook) checked the larval and pupal survival and growth and adult emergence of H. armigera. and Ingle et al. (2008) reported that effectiveness of entomogenous fungus, Nomuraea rileyii with combination of different plant oils on chickpea against Helicoverpa armigera, sprayings of soybean and sunflower oil formulation combinations were found very effective in reducing larval population, pod damage and increase in grain yield of chickpea.

References:


