Original Research Article

ACUTE AND SUB-ACUTE EVALUATIONS OF PARSONSIA STRAMINEA STEM BARK
ETHANOL EXTRACT IMPACT ON SOME BEHAVIORAL PARAMETERS IN MICE

ABSTRACT

Objectives: The plant Parsonsia straminea (P.S) have little or no ethnopharmacological records but local claims; as such its behavioral impact determination leads this study. The study team is poised at assessing the changes in behaviors such as: motor coordination, anxiety, and depression in single dose and repetitive dose(s) exposure. Methodology: Ethical consideration. The study proposal was submitted to the Research Ethics Committee of the University of Port Harcourt, Nigeria and approval was given. Plant collection and crude drug extraction. The was sourced from the Wilberforce rain forest of Nigeria and herbarium identification number NDUP/21/001 was given in the Department of Pharmacognosy and Herbal Medicine, Niger Delta University, Nigeria. The collected plant was processed for ethanol extraction according to the method described by Trease and Evans. Design. The study was designed into single (acute) and repetitive (sub-acute) treatments/exposures in all study methods. The acute were administered via oral and parenteral to ascertain safety and possible onset difference. The acute treatment doses are prepared from 100,200, 400, 800 and 1000 mg/kg and 50, 100, 200, 400 and 800 mg/kg treatment for 15 days plus control group in the respective phases, acute & sub-acute (n=5), motor coordination (open field test, cataleptic test), depression (light & dark box test), memory function test (B-maze) and sleeping time test was applied to both acute and sub-acute. Result: Data from the P.S stem bark extract showed significant motor coordination, prevents sleep onset, and no depression potential in both acute and sub-acute treatments. Conclusion: The P.S stem bark extract proves stable impact on the CNS as it is indicated in behaviors evaluated in the animal model. However beside all that are stated above, the extract of P.Straminea stem bark suggests usefulness in control of narcolepsy, cataplexy and sleep paralysis symptoms.

Keywords. caffeine, catalepsy, diazepam, light and dark, open field, Parsonsia straminea, phenobarbitone, sleeping time, tail suspension.
INTRODUCTION

Every substance in the guise of drug, therapeutics, and poisons in its natural, semi-synthetic and synthetic forms are without impacts on the behavior of the consumer(s) depending on the dose [1,2]. These behavioral changes could be noticed and un noticed depending on the period and the dosages exposed [3]. Despite, the wide claim of safety or less additive records of natural products does not rule out the changes in behaviors such as: motor coordination, anxiety, obsessive behaviors, depression among others [4,5,6]. Behavioral integrity is known to be the sane characteristic factor of every individual as it is a thing of caution in every substance of consumption especially among humans. Behavioral checks became a necessity especially among the present day young people as well as the advanced aged being associated with gross use of drugs, leading record of addiction, abuse and death globally [4,2, 7].

The plant *Parsonsia straminea* (P.S) have little or no ethnopharmacological records; however, its recorded to have its origin in New south Wales and Queensland of the Australian rain forest. It is commonly known as silkpod, monkey rope vine which belong to the Apocynaceae family [8,9,10,11]. The plant was accidently identified by means of local use for seizure control in the Wilberforce Island of Bayelsa State, Nigeria. Thus, the need for screening for its possible behavioral influence became necessary as a means of controlling herbal induced behavioral changes among other checks.
METHODOLOGY

1. Ethical consideration. The study proposal was submitted to the Research Ethics Committee of the University of Port Harcourt, Nigeria and approval identity, UPH/CEREMAD/REC/MM76/003 was given.

2. Plant collection and crude drug extraction. The plant was sourced from the Wilberforce rain forest of Nigeria and herbarium identification number, NDUP/21/001 was given in the Department of Pharmacognosy and Herbal Medicine, Niger Delta University, Nigeria. The collected plant was processed for ethanol extraction according to the method described by Trease and Evans as reported by [12].

3. Animal. Mice were the animal used in this study; which were raised in the animal house unit of the Department of Pharmacology and Toxicology, Niger Delta University, Nigeria in accordance with the prescribed international standard practice as instituted by the ethical research committee, NDU/PHARM/AEC/22/019A.

4. Design. The study was designed into single (acute) and repetitive (sub-acute) treatments/exposures in all study methods. The acute were administered via oral and intraperitoneal to ascertain safety and possible onset difference while sub-acute groups were treated orally. The acute treatment doses are prepared from 100, 200, 400, 800 and 1000 mg/kg and 50, 100, 200, 400 and 800 mg/kg treatment for 15 days plus control group in the respective phases, acute & sub-acute (n=5) [13].

Open-Field Test (OFT). The effect of *P. straminea* stem bark on locomotion in mice were measured in an open field apparatus, based on the number of lines crossing activity. The “animals were placed into an opaque Plexiglas observation chamber with one transparent side for
observation; consisting of squared arena (28 cm × 28 cm × 25 cm) high with grey surface covering every wall. Mice were placed individually into the center of the arena and allowed to explore freely. The number of squares crossed with all paws (crossing) was recorded and counted for a period of 5 min as previously described” [14,15]. The observation cage was cleaned with 70% ethanol after each assessment to remove olfactory cue from previous animal to the other.

Catalepsy. The plant *P. straminea* was evaluated for its motor coordination potential using wooden block of 3 cm height. The “animals in various groups were subjected to the evaluation by placing the fore paw of the mouse onto the block and time the duration of stay on the block in seconds. The scoring of catalepsy was not necessary because of absence of induction of catalepsy” [16].

Light/Dark Box (LDB) Test. Anxiety-related behavior was further tested in the light–dark exploration test as described by Crawley and Goodwin, [1] with modifications. The apparatus was a wooden box (36 cm long × 33 cm wide × 30 cm deep) divided into two compartments by a wooden board with a small opening (8 cm × 8 cm) connecting the compartments. The “larger compartment comprised two-thirds of the apparatus, painted white, open and illuminated by a 60-W lamp placed 50 cm above the compartment. The smaller compartment was painted black and had a cover that was closed during testing”. Male “mice were divided into ten groups (n= 6) and treated with *P. straminea* stem bark extract, diazepam, PTZ and the vehicle as described above for the elevated plus-maze test. At the beginning of the experiments, mice were placed individually at a far corner of the dark compartment facing the light compartment and videotaped with a digital video camera for a period of 5 minutes. Behaviors of the animals from the record was analyzed for the following Parameters: (1) The latency to emerge from the dark
compartment with all four paws into the light compartment, (2) Total time spent in each compartment, and (3) Total number of transitions between the compartments” [15].

Tail Suspension Test. Briefly, “mice were suspended one after the other by the tail from a horizontal ring-stand bar raised 30 cm above the floor using adhesive tape placed 1 cm from the tip of tail. The mice were positioned such that the base of their tail aligned with the horizontal plane. Test sessions lasted for 6 min and the behaviors for the last 4 of the 6-minute period were then noted for mobility and immobility times” [17].

B-Maze. As described by Attar study group [18]. Barnes maze was employed to assess cognitive deficits in learning and memory of mice. “The maze was made from a circular, 13-mm thick, white PVC slab with a diameter of 48 cm. Twenty holes with a diameter of 1.75 cm were made on the perimeter at a distance of 1 cm from the edge. This circular platform was then mounted on top of a rotating stool, 35 cm above the ground and balanced [19].

The “escape cage was made by using a mouse cage and assembling a platform and ramp 1.25 cm below the surface of the maze. The platform, made of a square petri dish, and ramp, made of laminated cardboard, were made out of plastic to be easily cleanable with 70% ethanol. The outside of the walls of the cage was covered with black paper to make the inside of the cage dark and thus attractive to the mice. The maze was placed in the center of a dedicated room and two 120 W lights were placed on the edges of the room facing towards the ceiling about 3/4 of the way up from the floor and about 3–5 feet away from the maze. Eight simple colored-paper shapes (squares, triangles, circles) were mounted around the room as visual cues, in addition to the asymmetry of the room itself. After testing each mouse, the cleaning of the quadrant of the maze around the target hole was alternated with cleaning the whole maze, using 70% ethanol.
The maze was rotated clockwise after every 3 mice to avoid intra-maze odor or visual cues”. Latency to escape were recorded” [19].

The “mice interacted with the Barnes maze in three phases: “habituation (1 day), training (2–4 days in the short or long training paradigms, respectively), and probe (1 day). Before starting each experiment, mice were acclimated to the testing room for 1 h. Then all mice (n=2–4) from one cage were placed in individual holding cages where they remained until the end of their testing sessions. Holding cages were used during the experiment to control for potential artifacts that could result from housing some mice only two per cage, and remained alone while the other mouse was being tested, compared to other mice that were housed four per cage and therefore never were left on their own”. Additionally, using holding cages prevented potential influence by mice that had already completed the test on the mice waiting for their turn. After all mice from one home cage completed testing for the day, they were placed back in their home cage together, the holding cages were cleaned, and the next set of mice was separated into individual holding cages” [19]. This study method is only applied to the sub-acute phase of this assessment.
Pentobarbitone-Induced Sleeping Time

Mice in this study were randomly divided into groups (n=6) as described above: “saline-treated group as control, *P.straminea* treated groups as described above, diazepam (5 mg kg⁻¹, p.o.) group and caffeine (16 mg kg⁻¹, p.o.) group. Sodium pentobarbitone (50 mg kg⁻¹) was intraperitoneally administered 60 min after treatment of test drugs. Two parameters were recorded: sleep onset and duration of sleep” [20]

5. Statistically analysis. Data presented as mean ± standard error of mean (SEM). Graph pad prism 8.3, ANOVA followed by tukey post hoc test. Differences between mean value compared were considered significant at *P*<0.05.

RESULTS

1. Acute Treatment

Motor coordination evaluations

Table 1. Acute Open Field Test

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment (mg/kg)</th>
<th>Oral route (N)</th>
<th>Intraperitoneal route (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VEH 0.2 ml</td>
<td>72.6±6.1</td>
<td>72.6±2.3</td>
</tr>
<tr>
<td>2</td>
<td>PS 100</td>
<td>75.0±2.1</td>
<td>76.0±2.0</td>
</tr>
<tr>
<td>3</td>
<td>PS 200</td>
<td>90.0±2.8**</td>
<td>91.4±1.1**</td>
</tr>
<tr>
<td>4</td>
<td>PS 400</td>
<td>74.2±6.0</td>
<td>80.8±2.0</td>
</tr>
<tr>
<td>5</td>
<td>PS 800</td>
<td>56.6±6.5</td>
<td>85.6±1.9**</td>
</tr>
</tbody>
</table>
Data showed increased coordinated mobility compared with control group significantly * = significant (P<0.048), ** = significant (P<0.002). VEH=Vehicle/control, PS= *P.Straminea* Stem Bark Extract. N. Number of lines crossed accurately within 300 sec.

Table 2. Acute Cataleptic Evaluation

<table>
<thead>
<tr>
<th>Treatment (mg/kg)</th>
<th>Oral route Duration (120 sec)</th>
<th>Intraperitoneal route Duration (120 sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEH</td>
<td>1.24</td>
<td>1.24</td>
</tr>
<tr>
<td>PS 100</td>
<td>1.22</td>
<td>1.18</td>
</tr>
<tr>
<td>PS 200</td>
<td>2.94</td>
<td>2.92</td>
</tr>
<tr>
<td>PS 400</td>
<td>3.82*</td>
<td>1.63</td>
</tr>
<tr>
<td>PS 800</td>
<td>3.36*</td>
<td>1.31</td>
</tr>
<tr>
<td>PS 1000</td>
<td>4.16**</td>
<td>47.86****</td>
</tr>
</tbody>
</table>

Data showed mild cataleptic sign in higher doses of both routes of administration. * = significant (P<0.048), ** = significant (P<0.002), *** = significant (P<0.001), **** = significant (P<0.0001). VEH=Vehicle/control, PS= *P.Straminea* Stem Bark Extract. Time spent on the wooden block as an indication catalepsy was measured within 120 sec.

Depression Evaluations

Figure 1a. light and Dark. Oral route. Data indicates absence of depression with all doses of the plant extract of the oral route of administration making more rounds in the light compartment. **** = significant (P<0.0001). VEH=Vehicle/control, PS= *P.Straminea* Stem Bark Extract.
Figure 1b. light and Dark. Intraperitoneal route (I.P). Data indicates absence of depression with all doses of the plant extract of the i.p route of administration making more rounds in the light compartment. ****= significant (P<0.0001). VEH=Vehicle/control, PS= P.Straminea Stem Bark Extract.

Table 3. Acute Tail Suspension Test

<table>
<thead>
<tr>
<th>Treatment (mg/kg)</th>
<th>Oral route</th>
<th>Intraperitoneal route</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.T (min)</td>
<td>I.T (min)</td>
</tr>
<tr>
<td>VEH</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>PS 100</td>
<td>3.22</td>
<td>1.78</td>
</tr>
<tr>
<td>PS 200</td>
<td>2.95*</td>
<td>2.05</td>
</tr>
<tr>
<td>PS 400</td>
<td>2.75*</td>
<td>2.25</td>
</tr>
<tr>
<td>PS 800</td>
<td>3.12**</td>
<td>1.88</td>
</tr>
<tr>
<td>PS 1000</td>
<td>2.55*</td>
<td>2.45</td>
</tr>
</tbody>
</table>

Data showed better struggling time compared with immobility time. *=significant (P<0.0483), **= significant (P<0.002), ***= significant (P<0.001). VEH=Vehicle/control, PS= P.Straminea Stem Bark Extract. The measure of symptomatic depression was determined by struggling and immobility time (min) within 5min.
Phenobarb induced sleep time evaluation

Figure 2a. Oral route. showed increased latency to sleep in all doses of the plant extract significantly, ****= (P<0.0001). VEH=Vehicle/control, PS= *P.Straminea* Stem Bark Extract. DZP= diazepam, CFN = caffeine

Figure 2b. Intraperitoneal route. showed increased latency to sleep in all doses of the plant extract significantly, ****= (P<0.0001). VEH=Vehicle/control, PS= *P.Straminea* Stem Bark Extract. DZP= diazepam, CFN = Caffeine
2. Sub-Acute Treatment

Motor coordination

Figure 3. Sub-Acute Open Field test showed little or no significant different with the control. VEH=Vehicle/control, PS= P.Straminea Stem Bark Extract. Motor function activities measured by open field (P>0.05).

Figure 4. Catalepsy scoring showed significant reduction in time taken to inclined to the measuring device **** P<0.0001. VEH=Vehicle/control, PS= P.Straminea Stem Bark Extract. Motor function activities measured by catalepsy.
Figure 5. Sub-Acute Light and Dark Test. Data indicates absence of depression with all doses of the plant extract of the oral route of administration making more rounds in the light compartment. ***= significant (P<0.001). VEH=Vehicle/control, PS= *P.Straminea* Stem Bark Extract.
Depression

Figure 6. Tail suspension test. showed more struggling time compared with the immobility time,**** P<0.0001. VEH=Vehicle/control, PS= *P. Straminea* Stem Bark Extract.

Memory function test

Table 4. Sub-Acute Barnes Maze Test: Escape Latency

<table>
<thead>
<tr>
<th>Parameters</th>
<th>VEH</th>
<th>50 mg/kg PS</th>
<th>100 mg/kg PS</th>
<th>200 mg/kg PS</th>
<th>400 mg/kg PS</th>
<th>800 mg/kg PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY 1</td>
<td>56.5±0.5</td>
<td>57.1±0.5</td>
<td>57.1±0.5</td>
<td>56.1±0.5</td>
<td>57.1±0.5</td>
<td>55.9±0.5</td>
</tr>
<tr>
<td>DAY 2</td>
<td>54.0±1.0</td>
<td>55.0±1.0</td>
<td>56.0±1.0</td>
<td>55.0±1.0</td>
<td>55.0±1.0</td>
<td>55.0±1.0</td>
</tr>
<tr>
<td>DAY 3</td>
<td>53.5±0.5</td>
<td>54.5±0.5</td>
<td>54.0±0.5</td>
<td>53.5±0.5</td>
<td>54.5±0.5</td>
<td>54.5±0.5</td>
</tr>
<tr>
<td>DAY 4</td>
<td>53.0±1.0</td>
<td>53.0±1.0</td>
<td>53.0±1.0</td>
<td>52.0±1.0</td>
<td>53.0±1.0</td>
<td>53.0±1.0</td>
</tr>
</tbody>
</table>

Data evaluation statistically indicates no difference. VEH=Vehicle/control, PS= *P. Straminea* Stem Bark Extract. Barnes maze, memory measured with escape latency in days showed not significant (P>0.05).
DISCUSSION

Some drugs or chemicals penetrate the central nervous system rapidly and some other poorly. This is likely to be its lipid solubility / water-phobic nature or strength as well as level of exposure of the drug to the brain or the allied tissues. The stem bark extract of *P.Straminea* have shown to have motor coordination potential at acute and sub-acute levels of exposure in open field and cataleptic methods of evaluation (table 1, 2, figure 3 & 4). This is also an indication that the stem bark extract of *P.Straminea* at the dose range of 50 to 1000 mg/kg do not deregulate or desensitize the catechol-aminergic system. Most substances that depresses the central nervous system [21] usually ends in addiction and abuse which is a serious check in pharmacovigilance and ethnopharmacological profiling [22]. The stem bark extract of *P.Straminea* through the light and dark box and tail suspension methods have implied that there

Figure 7. Sleeping time. showed increased latency to sleep in all doses of the plant extract significantly, ****= (P<0.0001). VEH=Vehicle/control, PS= *P.Straminea* Stem Bark Extract. DZP= diazepam, CFN =caffeine
is little or no central depressive potential and such cannot aid depression as evidenced in the motor coordination results. Light and dark box device is also used to evaluate or measure the presence of induced anxiety in the animal model. This result can be said of the plant extract to possess anti-anxiogenic prospect (figure 1a, b; table 3, figure 5 & 6). Barnes maze test used for the measurement of memory function proves the stem bark extract of *P.Straminea* to be devoid of memory impairment at subacute level of exposure. This again implies that crude drug of *P.Straminea* do not impede or deplete acetylcholine or the cholinergic system among other memory associated biological managers (table 4). The stem bark extract of *P.Straminea* proves none sedating ability that could be comparable to a 200 mg/kg of caffeine in all doses used in this study (figure 2a, 2b & 7). The action of the extract implies the possibilities of its lipophilic nature and similarity to the mechanism of action of caffeine as it proves to prevents the onset of drowsiness believed to be induced by adenosine. Caffeine by one of its actions is thought to antagonize the adenosine receptors, also inhibition of phosphodiesterase [23,24], release of calcium from store intracellularly and benzodiazepine receptor antagonism, [25]. This also inform us on the bases of the good motor coordination among the test doses of the stem bark extract of *P.Straminea*.

CONCLUSION

The plant extract of *P.Straminea* stem bark has given impression of positive impact on the some of the behaviors (motor coordination, depression/anxiety, memory function and hypnosis/sedation) by not depressing but keeping stable the central nervous system (CNS), after acute and sub-acute exposure of various doses of the stem bark extract of *P.Straminea*. However beside all that are stated above, the extract of *P.Straminea* stem bark suggests usefulness in control of narcolepsy, cataplexy and sleep paralysis symptoms.
Authors have declared that no competing interests exist. The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

REFERENCES

20. George O, Meshack AA, Isaac TH. Pentobarbitone-induced sleeping time and sub-acute toxicity studies of Trichilia monadelpha aqueous extract. Intl. journ of basic clinical pharm. 2016. 5(6)

