GEOSPATIAL ASSESSMENT OF Land Cover dynamics in the Guinea Savannah Ecological Zone

ABSTRACT

An attempt is made in this study to examine geo spatial analysis of land cover/land use changes between 2000-2016 in the North Central region including the Federal Capital Territory Abuja. Multi-spectral satellite images of LandSat 7 ETM and 8 OLI/TIRS of 2000, 2008 and 2016 with three land use types were identified and analysed using Geographic Information System ArcGIS 10.5 software. The land use types are Urban representing built up area, Vegetation and water bodies. The area of each land use type per year was calculated and the result was used to compute land use change and percentage change in square kilometers. The outcome of the analysis reveal that built up area (Urban) land use increase from 10.64% in 2000 to 22.44% in 2008 and later 29.01% in 2016 while Vegetation reduced from 84.99% in 2000 to 73.24% in 2008 and 62.74% in 2016. In the same vein, water bodies which stood at 4.37% in 2000 reduced to 4.32% in 2008 before declining again in 2016 to 4.27% respectively. The results has therefore highlighted the nexus between climate change and resource depletion and further provided valuable information for a robust assessment of the changes in vegetal resources of the study area over time. The study recommends sustainable forest resource management, vegetation monitoring and promulgation of vegetation control laws to improve the vegetation cover of the study area.

KEY WORDS:

Land cover, dynamics, landSat Imageries, climate change, Geo spatial assessment.
INTRODUCTION

Land use/land cover changes can occur naturally in the landscape as succession processes; however according to (Cappelaere et al; 2009), landscapes are modified by human activities in response to a specific need of the population that depends on the land in question, in the Sahel for instance, agriculture and wood harvesting for cooking fuel are the major activities that cause modifications of the land cover (Tobar, 2008). Land cover change has also been described as the most significant regional anthropogenic disturbance to the environment (Roberts et al., 1998). In essence both land use and land cover changes are products of prevailing interacting natural and anthropogenic processes by human activities (the use to which land is being put). Land use and cover change and land degradation are therefore driven by the same sets of proximate and underlying factors elements. Land use and cover change is therefore central to environmental processes, environmental change and environmental management due to its influence on biodiversity, water budget, radiation budget, trace gas emissions, carbon cycling, livelihoods (Verburg et al., 2002), and a wide range of socio-economic and ecological processes (Desconnect et al., 1997), which on the aggregate affects global environmental change and the biosphere. There are various forms of land use/land cover change. Land use can change from forest to agriculture with huge impact on natural resources, biodiversity conservation, and water cycles. Although the land use/land cover classification process is rather subjective and it is difficult to identify a single ideal classification system (Anderson et al., 1976), analysis of these changes is important in the adequate management of natural resources and the sustainable development of populations.

According to (Eludoyin et al; 2011), most of the interest in land cover/land use studies emanates from several processes associated with the earth’s surface including land productivity, bio diversity, biochemical and the hydrological cycles. Therefore changes in land cover analysis are important parameters that significantly impact on hydro climatic
processes particularly surface hydrology (Odunuga and Oyebande, 2007). It also form the basis for understanding the interaction between human activities and the environment.

Land use/land cover changes can be analyzed by pre-classification and post classification methods. Pre-classification methods apply image analysis algorithms to highlight change vs. no-change areas, whereas post classification methods compare land use/land cover classes derived from images to indicate changes from one class to another between two different time periods (Mubea, Mundia, and Kuria, 2011). Tayyebi (2008) noted that “change studies recognize the biotic and abiotic components of multi-spectral and multi-temporal variations that are occurring within an ecosystem”. This will be domiciled on major two approaches: map-to-map and image-to-image comparisons. There are various forms of change detection applications that have been tested, and executed in different study areas; the result indicated no significant answer. We will employ the visual analysis based on image to image comparison method for this study which commonly used for land change detection.

In Nigeria particularly in the central region, there is dearth of empirical work on this subject matter. Abbas (2009), examine an overview of land cover changes in Nigeria between 1975-2005 in which he noted significant loss of arable land in most parts of Northern Nigeria.

It was established in the study that the savannah vegetation in the central states is fast transiting into pure sahel due to the influence of desertification and drought. Findings of the above research confirmed the recent security crises between herdsmen and farmers in the central states are manifestations of drought induced land use changes in the North. It is this attempt to bridge the existing gap in the literature that further necessitates this study.
STUDY AREA

North central Nigeria lies approximately between 3° and 14°E and latitude 7° and 10°N. The region is made up of six states namely Benue, Kwara, Niger, Plateau, Nassarawa, Kogi and Abuja (the Federal Capital Territory) as shown in Figure 1. The relief of the lower Benue basin which this study falls comprise of two distinctive relief regions. The upper part is located in the northwest axis and is an extension of the steep scarp of the Jos Plateau. The study area has an excellent network of drainage network. This extensive drainage forms tributaries that flow from the Benue River and River Niger. At Lokoja, the River Niger and the Benue meet giving rise to Kogi as a confluence state. Most parts of the region are drained by the Benue River. The climate of the region is partly influenced by climates in the northern and southern region of Nigeria (Aper, 2006) The tropical savannah climate characterized by wet and dry condition affects most parts of north central Nigeria. The study area is within the Guinea savannah vegetation belt. This vegetation belt is mainly of deciduous trees with grasses and shrubs (Idoko, 1998). The soils of North Central Nigeria are generally characterized by a sandy surface horizon overlying a weakly structured clay accumulation. The Geology of the Lower Benue Basin is underlain by two principal geological formations namely the Precambrian Basement Complex and the Sedimentary Formations. Nigeria’s federal capital territory created in 1976 is the melting pot of all administrative and political activities in the region. Agriculture forms the backbone of the economy of the lower Benue basin with more than 70% of the working population engaged into farming, fishing, livestock and poultry. This has made the zone often referred as the food basket of the Nation.
MATERIALS AND METHOD

In order to assess land cover/land use change and its implication on drought frequency in the study area, a change detection analysis was performed to determine the nature, extent and rate of change over time and space.
IMAGE GEO-PROCESSING FOR LANDUSE CHANGE AND PERCENTAGE CHANGE

The study made use of multi-spectral satellite images of Landsat 7 ETM and 8 OLI/TIRS of 2000, 2010 and 2017; all having the same characteristics. The images were enhanced by combining image bands from 1 to 5 only to ease mosaiking of each image scene in each year. A false colour composite band sequence 5, 4, 2, RGB was used for classifying the land cover. A combination of channel 5 (red), channel 4 (green) and channel 2 (blue) is effective in discriminating different vegetal cover types. Information from each land cover classes was collected from extensive field survey before the classification of satellite imageries. Field survey was performed throughout the study area with the use of global positioning system (GPS) to track the coordinates of the sample points in each land use/land cover. The field work was conducted between December, 2017 and January, 2018; to ground truth the status of vegetation cover and development in each state. The scenes of the images of each year were mosaicked to represent one image for each year. Thereafter supervised classification using maximum likelihood algorithm classifiers was used to classify similar spectral signatures into various classes which included vegetation cover, water bodies and built-up area. Maximum likelihood classifier was chosen because it is the most widely adopted parametric classification algorithm. The area of each land use class was computed in ArcGIS 10.5 which was used to compute the land use change and percentage change in squared kilometres. The percentage change was computed using this formula.

\[
\frac{\left(\frac{d}{t_1} \right) \cdot 100}{y_2 - y_1}
\]

Where, \(d\) is the difference in the value of area covered by a land cover category at the initial time point and final time point

\(t_1\) is the value of the area covered by a land cover category in the initial time point

\(y_1\) and \(y_2\) are base year and final year respectively.
RESULTS AND DISCUSSION

The result of the analysis are presented below:

Table 1: Summary of Land cover/Land use change at Different periods 2000-2016

<table>
<thead>
<tr>
<th>Landcover</th>
<th>Extent 2000 (Sq. Km)</th>
<th>Percentage 2000 (%)</th>
<th>Extent 2008 (Sq. Km)</th>
<th>Percentage 2008 (%)</th>
<th>Extent 2016 (Sq. Km)</th>
<th>Percentage 2016 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built Up Area</td>
<td>24082.33</td>
<td>10.64</td>
<td>50814.03</td>
<td>22.44</td>
<td>65685.78</td>
<td>29.01</td>
</tr>
<tr>
<td>Vegetation Cover</td>
<td>192457.17</td>
<td>84.99</td>
<td>165836.50</td>
<td>73.24</td>
<td>142065.45</td>
<td>62.74</td>
</tr>
<tr>
<td>Waterbodies</td>
<td>9895.13</td>
<td>4.37</td>
<td>9784.15</td>
<td>4.32</td>
<td>9678.40</td>
<td>4.27</td>
</tr>
<tr>
<td>Total</td>
<td>226434.63</td>
<td>100.00</td>
<td>226434.63</td>
<td>100.00</td>
<td>226434.63</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Table 2: Rate of Change Analysis and Percentage Rate of Change of Landcover between 2000 and 2016

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rate of Change (Sq Km)</td>
<td>Percentage (%)</td>
</tr>
<tr>
<td>Built Up Area</td>
<td>+26731.7</td>
<td>+111.00</td>
</tr>
<tr>
<td>Vegetation Cover</td>
<td>-26620.67</td>
<td>-13.83</td>
</tr>
<tr>
<td>Waterbodies</td>
<td>-110.98</td>
<td>-1.12</td>
</tr>
</tbody>
</table>
The two tables above reveal the different land cover types, areal coverage, rate of change analysis and percentage rate of change in the three different periods of study.

An insight into Table 1 indicates that in 2000, water bodies has 4.37% of the land cover followed by built up area 10.64% and finally vegetation cover with 84.99% during the year under investigation.

The result of the analysis further reveal that vegetation cover was the dominant land cover type while water bodies recorded the least during the period under investigation. This is illustrated below in the LandSat imagery obtained for the year in Figure 2. This is illustrated further below by the LandSat imagery obtained for the year.

![Land Cover of the Study Area For 2000](image.png)

Fig.2: Land Cover of the Study Area For 2000
By 2008, built up area (Urban) has increased to 22.44%. This increase is bound to have implications on vegetation cover and water bodies. With increasing urban growth, the rich vegetation cover will be cleared for building and other construction activities.

Secondly, encroachment on water bodies is expected as more human activities are extended to the coastal and banks of the rivers with concomitant impact on the hydrology of the basin. This is evident in vegetation reduction by 73.24% covering 165836.50 sq.km while water bodies with 9784.15 sq km reduced by 4.32% and build up area covering 50814.03 sq km reduced by 22.44% as shown in table 2 and figure 3 respectively.

Fig. 3: Land cover for 2008
The results of analysis of land cover/land use presented in Figure 4 reveal progressive decline in vegetation and water bodies from 2008 to 2016 with an increase in built up area. In 2016, built up as land cover/land use type increased by 29% with spatial coverage of 65685.78 sq km as reveal in table 2. Vegetation cover declined by 14.33% covered only 62.74%. The causative factors are climatic shifts and increase in urban growth.

Fig. 4 Land cover for 2016

Similarly, rate of change analysis and percentage rate of change of land cover within the period of investigation, reveal that between 2000-2008, built up area rate of change was 26731.7 sq km at 111.00%, while vegetation cover changed at -26620.67 sq km with -13.83% and water bodies has -110.98 its rate of change at -1.12%, this is shown in table 2 above.

In the second period of the analysis (2008-2016), the rate of change for built up area was rather on the downward trend with 14871.75 sq km and 29.27% as its percentage of change while vegetation cover change was -23771.05 at -14.33% followed by water bodies -105.75 sq km at -1.08% as its rate of change and percentage of change as highlighted in table 2.
The analysis performed here are consistent with previous research findings by Abass (2005), Olagunju (2008), Olajuyibe, Balogun and Adegboyega (2016) on monitoring drought and its effect on vegetation as well as similar research investigation by Fabeku and Okogbue (2014) on trends in vegetation response to drought, Omonijo and Okogbue (2014) and Fabeku and Faleyimu (2017).

CONCLUSION
The study affirm that the land use and land cover of the study area has changed over the last few decades. While some experienced increase in terms of spatial coverage such as especially built up areas, water bodies and vegetation witness reduced and downward trend during the period under investigation.

The changes in land cover highlighted in this study calls for sustainable and proactive management of the biodiversity so as to mitigate the associated risk of global climate change. The study has therefore shed more light on the efficacy of remote sensing and GIS in the assessment of land cover dynamics.

RECOMMENDATION
The following recommendations have been put forward for adoption by policy makers to enhance their decision making process

- An improved understanding of the intricate relationship between human activities and the terrestrial environment. This is imperative considering the anthropogenic effect of climate change on physical environment.
• The increase in built up area representing urban growth has enormous implication on the hydrological balance of the study area. There is therefore the need to enact laws against forest encroachment and expansion so as to protect the ecosystem.

• There is need for monitoring of the vegetation in states considered most vulnerable. Furthermore, the study recommends sustainable forest resource management in the region. There is the need to preserve the forest resource endowment of the study area.

REFERENCES

Cappelaere, B;Descroix, L; Lebel, T and Guillaume, Q (2009)

The AMM CATCH experiment in the cultivated Sahelian area of South-west Niger-investigating water cycle response to a fluctuating climate and changing environment. Journal of Hydrology

Fabeku, B.B and Faleyimu O.I (2017) Drought Impact assessment on vegetation over the Sudano-Sahelian part of Nigeria

Fabeku, B.B, and Okogbue, E.C (2014) : Trends in Vegetation Response to Drought in Sudano-

Sahelian Part Of Northern Nigeria. Journal Of Atmospheric and Climate Sciences,(4), 569-588

Mubea, K.W., Mundia, C.N., and Kuria, D.N. (2011) The Use of Markov Chain Analysis in Predicting Land Use/Cover Change in Nyeri.” Working paper, Department of Civil Engineering, Kimathi University College of Technology, Nyeri, Kenya

