Original Research Article

EFFECT OF PROCESSING ON THE ANTINUTRIENT CONTENT OF EXTRUDED SNACKS FROM COCOYAM–BAMBARA GROUNDNUT FLOUR BLENDS.

ABSTRACT

Snacks from the blends of cocoyam and Bambara groundnut composite flour blends were developed through extrusion cooking Technology. Response Surface Methodology (RSM), formulations, and optimization of the process variables. The objective was to establish the optimum level of the effects of feed blend composition (X1), barrel temperature (X2), and feed moisture contents (X3) processing on the antinutrients composition of the composite flour blends. The responses were tannin, oxalate, phytates, and trypsin inhibitor. From the results, the tannin content ranged from 0.00mg/100g to 0.03mg/100g, oxalate 0.18mg/100g to 0.25mg/100g, phytate 0.23mg/100g to 0.69mg/100g and trypsin inhibitor 0.12mg/100g to 0.19mg/100g. These studies showed a significant difference (P ≤ 0.05) for all the processing variables on all the responses. The studies show that high temperatures and low moisture content have the optimum effects on the antinutrient content.

Keywords: Antinutrient, extruded, snacks, cocoyam, Bambara

1 Introduction

Cocoyam (Colocasia esculenta) contributes a significant portion of the carbohydrate content of the diet in many regions of developing countries and provides edible starchy corms or cormels. Although they are less important than other roots crops such as yam, cassava, and sweet potatoes, they are still the main staple in some parts of the tropical and sub-tropical regions [1]. Cocoyam contains an irritating/acridity principle that causes burning discomfort. The undesirable principle must be removed through processing such as fermentation, grating, boiling, or sun-drying before being fed to animals to reduce the danger of toxicity [2]. Cocoyam reported wide variation (2.10 – 17.13mg/100g) in the level of these undesirable substances. Cocoyams have nutritional advantages over root crops and other tuber crops [3]. It has a lot of crude protein than root and other tubers, the small size of its starch granules makes its starch highly digestible, its phosphorus content. Despite the nutritional importance of cocoyam as a food material, it is grossly underutilized. In some tropics and sub-tropics, cocoyam is only eaten as boiled, fried, roasted and used as flour and as a soup ingredient, and used as additives in porridge (gwater in Hausa). There is limited information on their post-harvest characteristics, contributing to the limited application of improved post-harvest technologists to maintain quality and improve marketing potential.

Bambara groundnut is a legume species of African origin [4] with subterranean fruit–set which is widespread south of the Sahara [5]. It serves as an important means of protein in the diets of a large percentage of the population in Africa, particularly for poorer people who cannot afford expensive animal protein. It serves both human and animal consumption. The plant has the potential to improve malnutrition and boost food availability. The seed makes a complete food, containing sufficient quantities of protein, carbohydrates, and fat. The Freshly harvested pods are eaten as snacks after boiling for approximately an hour [6]. [7]. The seeds may also be ground into flour and baked to make small flat cakes and bread. Additionally, thin porridge and stiff porridge have been made from flour. In Eastern Africa, Bambara groundnuts are roasted and milled, and the flour is used to make soup, a relish, and a substitute. [26] HTB Bambara groundnuts require a longer boiling time (namely 3–4 hours [7]) and therefore higher energy expenditure to become edible as compared to cowpea or common bean (Phaseolus vulgaris).

Flours obtained from other crops such as maize, millet, sorghum, cassava, potatoes, and rice had been used as a supplement to wheat flour to extend the use of local crops and reduce the cost of wheat importation [8]. Quality bread products have been made from such composite flour with other cereals and root crops [9]. [10] reported that the lack of information on the functional, chemical and nutritional properties of grain legumes grown in developing countries is responsible for the extensive use of this traditional use in food formulations. Food legumes have to be a good source of lysine, and therefore, a combination of cocoyam protein and legume protein provides an ideal source of dietary protein for...
humans [11]. Cocoyam is a good supplement for infants in food preparation because of the high digestibility of its starch, appreciable amounts of calcium and phosphorus (for bone building), B-complex vitamins, and provitamin A [12]. Recent research showed that cocoyam starch could be incorporated in the development of infant food which can be digested easily and accessible to low-income earners in developing countries [13]. The use of locally grown crops to produce high protein, shelf-stable, and affordable recipes in developing countries has been emphasized by international agencies as one of the suitable channels for addressing the deepening global nutrition challenges [14]. Nutritious foods to meet this requirement can be best achieved by a mixture of locally grown roots and tubers and legumes using processing techniques that are shelf-stable and acceptable consumer products using recent technologists [14], [15], e.g., use of extrusion processes.

Extrusion cooking technology is a continuous high temperature short, time (HTST) food processing method in which mechanical energy is combined with thermal energy to gelatinized starch and denature proteins, plasticizing and reorganizing food material to create new shaped and textured products; and also can inactivate enzymes, destroy some active substances and reduce microbial activity [16], [17] and [18] It has been used in the cereal industry to produce many foods and food ingredients such as breakfast cereals, snack foods, baby foods, pasta products, modified starches, beverages, powders, meat, and cheese analogs, textured vegetable protein and blended foods such as corn starches and grounded meats [19]; [20]; [21]. It is a technology that is robust, versatile, efficient, and low cost; has high output per unit, and short reaction time, relatively no waste generation [22]. During the extrusion process, chemical modification and structural changes occur in the raw material, such as starch gelatinization and protein denaturation [8], pigment and vitamin degradation [23], and loss of volatile compounds [24]. It is one of the latest advances in food processing technologists applied to foods [25]. It can. It can be applied to mitigate the problem associated with starch-based products in terms of improvement in functionality, physical property, and shelf stability. It provides many advantages over other process technologies regarding ready-to-eat foods of the desired shape, size, shape texture, and sensory characteristics at relatively low processing cost. The knowledge of the process in extruder operating variables, therefore, provides necessary information for the prediction of what fraction of food material will undergo a specific reaction during the extrusion process and its possible effects on the quality of finished products.

2. Materials and Methods
The Cocoyam used for this study was obtained from Kafanchan in Jema’a Local Government Area of Kaduna State (Nigeria). The variety was identified in Root Crop Research Institute Samaru (ABU) Zaria, while the Bambara was also purchased in Kaduna Central Market.

Cocoyam flour preparation
Cocoyam flour was produced using the method described by [26] with slight modifications. The corms were manually cleaned, diseased corms removed and then washed, peeled, sliced, and blanched at 80°C for 4 min. The blanching process helps in removing the excess starch and the mucilage and also helps in inactivating the enzymes that are likely to cause enzymic browning. It was dried to 14% moisture content and milled using attrition mill (locally fabricated). The principles in attrition milling is that, brittle food materials such as sugars, crystal or dry grains are obtain first by compression, then by using impact forces and finally by sharing or rubbing [27]. It was then sieved with a 4.5µm laboratory sieve (Brabender OHG Duisburg type).

Bambara ground nut flour preparation
Bambara ground nut (40 kg) was cleaned and soaked in tap water at room temperature (32°C), three times its weight by volume. The Bambara groundnut was soaked for 24hrs to facilitate dehulling, seeds were dehulled using mortar and pestle. The dehulled kernels was washed to remove the skin, oven-dried to about 14% moisture content before winnowing to have a clean dehulled seeds. The dried seeds were then milled into flour using attrition mill and sieved with 150µm laboratory sieve (Xin-Hai type). The samples were packaged in air-tight plastic container at room temperature until needed.
Blend formulation and moisture adjustment

The flour samples were blended and the calculated amount of water was added and conditioned to appropriate moisture content. It was mixed using Laboratory mixer at medium speed until it was properly mixed. The samples were put in an air tight polyethylene. The feed materials were allowed to stand for 3hrs to equilibrate at room temperature prior to extrusion exercise. The amount of water used was calculated using the equation below.

\[Y = \frac{M_f - M_i}{S_w} \times \frac{Sw}{100 - M_f} \]

where;
- \(Y \) = Amount of water to be added (ml)
- \(M_f \) = Final moisture content
- \(M_i \) = Initial moisture content
- \(Sw \) = Sample weight (g)

Extrusion exercise

The blends were subjected to extrusion cooking using a single screw extruder (Brabender, Duisburg DCE-330) equipped with a DC drive of variable speed and a strain gauge torque meter. The screw geometry is constant and has a linearly tapered. Feeds were manually introduced into extruder through a screw operated conical hopper at a speed of 50rpm which ensures that the flight of the screw is filled and avoiding accumulation of feed in the hopper. This type of feeding provides a close to a maximal flow rate for the selected process parameters and the designed feed composition and moisture content. Desired barrel temperature is maintained by circulating tap water controlled by in-build thermostat and a temperature-controlled unit. Experimental samples were collected when steady state is achieved, [28], [29]. The temperature was kept constant for the two extruder heating zones (1 and 2) of the barrel and the die 150, 170 and 150°C respectively, the extruded samples were stored in room temperature for future analysis.

Experimental Design

A three-factor central composite design (CCD) (Box and Hunter, 1957) was adopted to study the effect of feed composition (X₁) barrel composition (X₂), and feed moisture content (X₃) on the chemical composition. (antinutrient factors) The level of each variable was established according to literature information. The independent variables and their various levels are shown in the table below.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
<th>*α</th>
<th>Coded variable level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed composition (X₁)</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>56.82</td>
<td>1.682</td>
</tr>
<tr>
<td>Barrel temperature (X₂)</td>
<td>100</td>
<td>120</td>
<td>140</td>
<td>153.64</td>
<td>1.682</td>
</tr>
<tr>
<td>Feed Moisture Content (X₃)</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>29.45</td>
<td>1.682</td>
</tr>
</tbody>
</table>

Table 1: Independent variable and levels used for central composite design

Comment [a5]: Is it four samples or four formulations? Considering the fact that only 2 samples were purchased and processed.
If its four sample blends that were formulated, kindly state the ratios of the formulations.

Comment [a6]: How did you ascertain the steady state?

Comment [a7]: The die?

Comment [a8]: The title of the table showed independent variable while in the table its variable and coded variable. Kindly explain
Table 2 Experimental layout in their coded and natural units

<table>
<thead>
<tr>
<th></th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>X6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>30</td>
<td>100</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>50</td>
<td>100</td>
<td>8.00</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>30</td>
<td>140</td>
<td>8.00</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>50</td>
<td>140</td>
<td>8.00</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>30</td>
<td>100</td>
<td>24.00</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>50</td>
<td>100</td>
<td>24.00</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>140</td>
<td>24.00</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td>140</td>
<td>24.00</td>
</tr>
<tr>
<td>9</td>
<td>1.682</td>
<td>0</td>
<td>23.18</td>
<td>120</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.682</td>
<td>0</td>
<td>56.82</td>
<td>120</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1.682</td>
<td>40</td>
<td>153.63</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>153.63</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>-1.682</td>
<td>40</td>
<td>120</td>
<td>2.55</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>-1.682</td>
<td>40</td>
<td>120</td>
<td>29.45</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>120</td>
<td>16.00</td>
</tr>
</tbody>
</table>

X1 = feed composition, X2 = barrel temperature, X3 = feed moisture composition

Tannin determination
Tannin content was determined using the Folin-Denis colorimetric method described by [30]. 5gm sample was dispersed in 50ml of distilled water and shaken. The mixture was allowed to stand for 30min at 28°C before being filtered through Whitman No 42 grade of filter paper. 2mls of the extract were dispersed into a 50 ml volumetric flask. Similarly, 2ml standard tannin solution (Tannic acid) and 2ml of distilled water were put in separate volumetric flask to serve as standard and reagent was added to each of the flask and then 2.5ml of saturated Na2CO3 solution was added. The content of each flask was made up to 50ml with distilled water and allowed to incubate at 260nm using the reagent blank to calibrate the instrument at zero.

Phytates determination
Phytates content was determined using spectrophotometric method as describe by [31]. 0.5g of sample was weighed into 500ml flat bottom flask. The flask was placed in a shaker and the sample was extracted with 2.5% HCl for 1hr. The aliquot was filtered and 5ml of the filtrate was pipetted and diluted to 25ml with distilled water. 15ml of NaCl was added to 10ml of the diluted sample and this was passed through an anion exchange resin (200-400 mesh) to elute inorganic phosphorus. 15ml of 0.7M sodium chloride (NaCl) was added to the solution which was mixed on a vortex mixer for 5sec. The mixture was then centrifuged for 10min. and the supernatant was read at 520nm wavelength in UV spectrophotometer. The Phytates concentration was read off from a standard curve prepared with standard inositol. Phytates was expressed in mg/100g

\[
\text{Phytates (mg)} = \frac{\text{conc. of phytate from standard curve}}{\text{dilution factor}} \times \text{weight of sample}
\]

Oxalate determination
Oxalate was determined by the method described by [32]. This method involves three major steps; digestion, oxalate precipitation and permanganate titration.

Trypsin inhibitors
Trypsin inhibitors of the sample was determined by spectrophotometric method of [31]. One gram of the sample was mixed with 150 ml of 0.5 M sodium chloride (NaCl) solution. The mixture was shaken for 30min at room temperature using an electric shaker. It will then be centrifuged at 3500rpm for 30min using a centrifuge (Model LC2216 Satorious, Germany) and was filtered through Whatman no. 42 grade filter paper. The resulting filtrate (extract) will then be used for the determination of trypsin inhibitors activity. Ten (10ml) each of trypsin enzyme solution was dispensed into two test tubes and labeled to represent

Comment [a9]: Having gone through the method that was adopted, kindly revisit table 1 and 2.
sample and the control. 1ml of distilled water was added while 1ml of the extract was added to the sample tube. Both tubes were allowed to stand for 10min and their absorbance was measured in a spectrophotometer at a wavelength of 401nm. The number of trypsin unit inhibitor (TUI) per gram of the sample was given; TUI being equal to an increase of 0.01 absorbance unit at 410nm. It was obtained by using the formula below:

\[\text{TUI/g} = \frac{1 \times (a - W \times 0.01)}{W} \]

Where TUI/g = trypsin unit inhibitor per gram sample,
\(a = \) absorbance of control
\(W = \) weight of sample

Results

Table 2. Result of Anti-Nutrient Analysis of the Raw Materials for Cocoyam and Bambara groundnut.

<table>
<thead>
<tr>
<th>anti-nutrients</th>
<th>cocoyam</th>
<th>bambara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannin</td>
<td>0.02±0.00^a</td>
<td>0.60±0.00^b</td>
</tr>
<tr>
<td>Phytate</td>
<td>5.25±0.01^b</td>
<td>1.76±0.01^a</td>
</tr>
<tr>
<td>Oxalate</td>
<td>852.6±0.01^b</td>
<td>586.2±0.01^a</td>
</tr>
<tr>
<td>Trypsin</td>
<td>0.00±0.00^b</td>
<td>3.00±0.01^d</td>
</tr>
</tbody>
</table>

Comment [a10]: Consider using raw cocoyam and Bambara …… rather than raw material

Comment [a11]: In the methodology session, the procedure for trypsin estimation was not mentioned but appeared in the result segment. Include the method used
Table 3: Effects of feeds composition (x_1), barrel temperature (x_2) and feed moisture Content (x_3) on the Antinutrients of Bambara g/nut and cocoyam extrudate

<table>
<thead>
<tr>
<th>EXP RUN</th>
<th>Ind. Variable in their natural forms</th>
<th>Anti-nut comp. (mg/100 mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(X_1) (X_2) (X_3)</td>
<td>Tannin</td>
</tr>
<tr>
<td>1</td>
<td>30 100 8</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>50 100 8</td>
<td>0.03</td>
</tr>
<tr>
<td>3</td>
<td>30 140 8</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>50 140 8</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>30 100 24</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>50 100 24</td>
<td>0.01</td>
</tr>
<tr>
<td>7</td>
<td>30 140 24</td>
<td>0.01</td>
</tr>
<tr>
<td>8</td>
<td>50 140 24</td>
<td>0.01</td>
</tr>
<tr>
<td>9</td>
<td>23.18 120 16</td>
<td>0.03</td>
</tr>
<tr>
<td>10</td>
<td>56.82 120 16</td>
<td>0.02</td>
</tr>
<tr>
<td>11</td>
<td>40 86.36 16</td>
<td>0.01</td>
</tr>
<tr>
<td>12</td>
<td>40 153.63 16</td>
<td>0.01</td>
</tr>
<tr>
<td>13</td>
<td>40 120 2.55</td>
<td>0.01</td>
</tr>
<tr>
<td>14</td>
<td>40 120 29.45</td>
<td>0.01</td>
</tr>
<tr>
<td>15</td>
<td>40 120 16</td>
<td>0.00</td>
</tr>
</tbody>
</table>

X_1=Feed composition; X_2= Barrel temperature; X_3= Feed moisture composition.

Discussions
Legumes present a primary source of nutrients which is valuable but incomplete balance protein, especially in vegetarians’ diets [33]. The processing methods and the presence or absence of toxic factors are of great concern [33].

The antinutrient content of the cocoyam/Bambara groundnut; Table 3 shows that the values of tannins ranged between 0.00mg/100g to 0.03mg/100g. The highest and the lowest values were recorded under similar processing conditions, which indicates that individual processing variables have no significant impact on tannin. Still, the extrusion process degraded the tannin content as observed from the raw product analysis (table 2); a combination of high moisture and temperature in extrusion, however, has

Comment [a12]: Do you mean cocoyam or Bambara, cocoyam and Bambara or a blend of both. In the methodology, under “Blend formulation and moisture adjustment” four samples blend was formulated.
been reported to significantly reduce the number of tannins in legumes [34]. Tannins are one of the most common phenolic compounds found in beans [35]. The tannin content in all the raw materials is significantly different (Table 2), which may have informed the variance in their composition observed in the result.

The oxalate composition of cocoyam/ Bambara groundnut showed that the highest value is in run 1 (0.29mg/100g) and the lowest in run 3 (0.18mg/100g) on the processing temperature of 1400c, 30%, feed blend composition and 8% moisture content. The amount recorded in raw material (Table 2) suggests that the extrusion condition has a significant impact on the oxalate content. Oxalates are a natural substance in some foods. One of the leading health challenges of oxalate is that it can bind to minerals in the gut and inhibit the body from absorbing them; they bind to calcium during digestion in the stomach and intestines [36].

The phytates content of cocoyam/Bambara groundnut extrudate ranged from 0.23mg/100 to 0.85mg/100. The individual raw materials (cocoyam and Bambara groundnut) before extrusion showed a higher amount of Phytate; 5.25mg/100g and 1.76 mg/100g, respectively (Table 2). It is possible that the reduction in Phytate is a result of the extrusion cooking conditions. Phytate (inositol hexaphosphate) is commonly found in plant-based foods. Phytate chelates with divalent metal ions and interferes with the digestion or utilization of valuable minerals, especially iron, zinc, and calcium. It is well reported that even small amounts of Phytates in food will effectively reduce iron absorption [37], [38]. The composition of trypsin inhibitor of the cocoyam/Bambara groundnut extruded ranged from 0.03mg/100g to 0.19mg/100g. The highest values are obtained from the processing variables of runs 4, 5 and 10 with varying extrusion conditions. The most negligible trypsin value is from a processing variable of 30% feed moisture composition, 1000c barrel temperature, and 8% moisture content. The findings did not agree with the report of [39], who recorded 6.7mg/100g of trypsin in raw Bambara groundnut. The variation may be due to variety, soil type, or the processing methods. The results obtained show that the processing heat efficiently degraded the trypsin inhibitors. [34], posits that extrusion was the best method to eliminate trypsin, chymotrypsin, a-amylase inhibitors, and haemagglutinins activity without modifying protein. [40], in their findings concluded that antinutrients that were present in legumes were reduced significantly during extrusion cooking, [41] also reported that cooking for 60mins at 1000c was sufficient to inactivate over 90% of the trypsin inhibitor activity in Phaseolus vulgaris. This study corroborates the findings of previous other studies on the effects of extrusion cooking on the antinutrients of foods and food products.

Conclusion
Conclusively, this research work which is aimed at investigating the effects of processing or extrusion process on anti-nutritional factors of the Cocoyam-Bambara groundnut extruded snacks, has shown that processing actually has a tremendous positive impact on it because the results from the raw materials (Table 1) to the extruded snacks has indicated a significant reduction in the anti-nutritional factors of the products thereby making the desired nutrients which may be bound as a result of some nutritional inhibitors can be made fully available.

COMPETING INTERESTS DISCLAIMER:
Authors have declared that no competing interests exist. The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

REFERENCES

18. Ding C, Lo, M. Guve, N. B. Mbengue, Sélection participative de nouveaux cultivars de quatre (4) espèces de légumes-feuilles (Hibiscus sabdariffa L., Amaranthus L. ssp.

