ABSTRACT

Abstract

Diabetes mellitus is a global cause of morbidity and mortality. There is continuous rise in the patients of diabetes in Pakistan. Many conventional and natural origin medicines are available for maintaining optimum blood sugar level. There is a need to carry out standardization of the natural origin medicine to authenticate their efficacy and safety.

The objective of this research work was to carry out preliminary pharmacognostic, phytochemical, biological, pharmacological, toxicological studies on poly-herbal formulation. The poly-herbal preparation was prepared and evaluated for the standard pharmacopeial tests. The results of the tests performed were found to be adequate to evaluate the poly-herbal formulation and may be used as reference standards in future for further studies.

Key Words: Type 2 Diabetes Mellitus, Organoleptic, Microscopic, Fourier Transform Infra-Red Spectroscopy, Anti-Microbial Activity.

1. INTRODUCTION

Introduction

Type 2 diabetes mellitus is a rising socio-economic burden globally. Pakistan is one of the 19 countries and territories of the International Diabetes Federation, Middle East and North Africa (IDF MENA) region. Worldwide, 425 million people have diabetes. In MENA region more than 39 million people suffer from diabetes and by 2045, the figure will rise to 67 million [1].

Suggestion: To write here some lines on diabetes treatment and the use of medicinal plants to continue with description of the plants used in this study.

2. MATERIALS

2.1. Plants
The following plants were procured from local pansare and authenticated. All the procured and authenticated individual drugs were dried in shade and cleaned by hand sorting. The individual drugs were then crushed using grinder and passed through mesh no. 40. The individual drugs were then weighed as per the quantity required. The drugs were mixed. The mixed formulation was unloaded, weighed, and packed in labeled glass bottles.

2.1.1. *Syzygium cumini*

Syzygium cumini (Linn.) Skeels (Myrtaceae) is commonly known as Indian blackberry; Jaman. The fruits are rich in raffinose, glucose, fructose, citric acid, malic acid, gallic acid, anthocyanins; delphinidin-3-gentiobioside, malvidin-3-laminaribioside, petunidin-3-gentiobioside, cyaniding diglycoside, petunidin and malvidin. Black plum fruit and its leaves are good for diabetic patients. The black plum has anti-diabetic features. The fruit helps to convert starch into energy and keep your blood sugar levels in check [2].

2.1.2. *Momordica charantia*

Momordica M. charantia (bitter melon or bitter gourd) is a flowering vine in the family Cucurbitaceae. The main constituents of bitter melon which are responsible for the antidiabetic effects are triterpene, protein, steroid, alkaloid, inorganic, lipid, and phenolic compounds. It is a popular plant used for the treating of diabetes. *Momordica M. charantia* has significant antidiabetic as well as hypolipidemic activity so that it can be used as an adjuvant along with allopathic treatment of medicine to treat diabetes as well as to delay the late complications of diabetes [3].

2.1.3. *Wrightia tinctoria*

Wrightia tinctoria (Indarjou, pale indigo plant) belongs to family Apocynaceae. The chemical constituents of *Wrightia W. tinctoria* includes lipid, saponin, tannin, alkaloid, phenol, steroid, and flavonoid. *Wrightia W. tinctoria* possess significant anti-diabetic activity [4].

2.1.4. *Gymnema sylvestre*
Gymnema sylvestre (Asclepiadaceae), popularly known as "gurmar" for its distinct property as sugar destroyer. The major constituents’ saponins, alkaloids, anthraquinones, flavones, hentriacontane, pentatriacontane, phytin, resins, tartaric acid, formic acid, butyric acid, lupeol, β-amyrin related glycosides, stigmasterol, and calcium oxalate. The phyto-constituents responsible for sweet suppression activity includes triterpene saponins known as gymnemic acids, gymnemasaponins, and a polypeptide, gurmarin. *Gymnema G.* sylvestre has prospective clinical data in support of treatment of diabetes as it displays favorable effects on blood sugar homeostasis, controls sugar cravings, and promotes regeneration of pancreas [5].

3.EXPERIMENTAL PROCEDURE

3.1. Screening of anti-bacterial activity

The anti-bacterial activity of different medicinal plants five strains were explored in this study. Anti-bacterial activity of crude extract against the test organisms were determined by using agar-well method. All plates were incubated at 28 ± 2°C for 24-48 hours and after incubation diameter of zone of inhibition was measured [6].

3.2. Anti-inflammatory activity

The anti-inflammatory activity was evaluated by the Carrageenam induced paw edema method. [7]. The results were expressed as percentage reduction in edema volume, which can be calculated by using the formula:

\[
\% \text{ of inhibition} = \frac{\text{Control} - \text{Treated}}{\text{Control}} \times 100
\]

3.3. Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared Spectrometry (FTIR) of DM was carried out on FT-IR model Nicolet Avator 330-FT-IR (USA) [8].

3.4. Gas Chromatography-Mass Spectroscopy

Gas Chromatography-Mass Spectroscopy (GC-MS) was carried out using GC-MS 1. In the GC/MS process, a sample is first injected into a gas chromatograph, where components are separated according to size and/or polarity. Then, the components pass into a device known as a mass selective detector. It’s at this stage that a mass spectrum is obtained and compared against standard reference libraries in order to identify unknown components in the sample. [9].
3.5. Microscopic Evaluation
Microscopic evaluation was carried out using scanning electron microscope (SEM) [10].

4. RESULTS

Results

4.1. Microscopic Evaluation

Prominent microscopic features found were parenchymatous cells, starch grains, epicarp, mesocarp, vascular bundles, epidermis, hypodermis, endosperm, testa, schizogenous cavities, trichome, cortex and vascular bundle (See Figures 1 – 7).

4.2. Fourier Transform Infra-red Spectroscopy

The results can be seen in Figures 8 – 9.

4.3. GC-MS Evaluation

GC-MS spectra can be seen in Figure 10.

4.4. Anti-bacterial Activity

The results of anti-bacterial activity are exhibited in Table 1 below.

Table 1. Anti-bacterial activity.

<table>
<thead>
<tr>
<th>Name of Bacteria</th>
<th>% Inhibition of Compound</th>
<th>% Inhibition of drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>No Inhibition</td>
<td>91.69%</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>No Inhibition</td>
<td>89.56%</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>No Inhibition</td>
<td>94%</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>No Inhibition</td>
<td>88.2%</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>No Inhibition</td>
<td>93%</td>
</tr>
</tbody>
</table>

4.5. Anti-inflammatory Activity

The results of anti-inflammatory activity may be observed in Table 2 below.
Table 2. Anti-inflammatory activity

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Conc. (mg/ml)</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>25 µg/ml</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Figures 1-7. Electron Powder Microscopy

Figure 8. Fourier Transform Infra-red Spectroscopy. Significant peaks - C-H (stretch); O=C=O (stretch); C=O (stretch); C-H (bending)
Figure 9. Fourier Transform Infra-red Spectroscopy. Significant peaks - C-H (stretch); O=C=O (stretch); C=O (stretch); C=C (stretch); C-O (stretch)
Figure 10. GC-MS Spectrum. Significant peaks: Octadecanonic acid, n-Hexadecanoic acid; 2-Heptenal; Piperiene; Stigmasterol; Lupeol; Betulin; Ethyl iso-allocholate

5. DISCUSSION

Discussion

Natural source especially the herbals are in the lime light of discovery of novel molecules with better efficacy and lesser adverse events. The researches are being carried out to explore probable mechanism of action of the pharmacologically active ingredients present in any herb or
other natural source. Standardization of the herbal and other natural origin medicines is essential and plays a pivotal role in maintaining the quality control of the formulations prepared by them. In the current study the formulation was prepared with all those herbals that have already reported data of their anti-diabetic activity (Chandel et al. 2011; Ekka et al. 2008; Paramanick & Sharma 2017). *Syzygium cumini* contains mycaminose, which possess anti-diabetic activity (Kumar et al. 2008). *Momordica charantia* contains triterpene, proteid, steroid, alkaloid, inorganic, lipid, and phenolic compounds that possess anti-diabetic activity. Ursolic acid and chlorogenic acid, Aldose reductase inhibitors present in *Wrightia tinctoria* may be responsible for its antidiabetic potential (Oviya et al. 2015). *Gymnema sylvestre* contains triterpene saponins known as gymnemic acids, gymnemasaponins, and a polypeptide, gurmarin that may be responsible for anti-diabetic activity (Tiwari et al. 2014).

6. CONCLUSIONS

The results of our study revealed that the poly-herbal preparation for the treatment of diabetes mellitus contains carbohydrates, triterpenes, steroids, glycosides, polypeptides, inorganic and phenolic compounds. Due to the presence of the above mentioned constituent the formulation has potent anti-bacterial and anti-inflammatory activity.

COMPETING INTERESTS DISCLAIMER:

Authors have declared that no competing interests exist. The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

7. REFERENCES

Suggestion: 1. To write the references following the same style. 2. To avoid the un-necessary use of capital letters in title of the article. 3. To use the abbreviation of the journal if it is available.