Original Research Article

A study on Constraints and Suggestions in Agriwaste Management by Farmers of Medak district in Telangana

ABSTRACT

Agriculture is the largest contributor of any resource sector, to the economy. Agriculture is also a larger generator of waste material. This paper focused to study the constraints and suggestions in agri waste management. The Ex-post facto research design was adopted for the study with a sample of 120, covering Medak district of Telangana state. This study focus on analysis of profile characteristics respondents, constraints and suggestions of of respondents in agri waste management. Major constraints expressed by the farmers in adoption of agri waste management practices were, agri waste management practices requires additional work and cost, non availability of labour for the agri waste management practices, difficult to manage huge volume of agri waste, decomposition of agri waste takes time and low preference of farmers for doing waste management practices. Suggestions expressed by respondents for increased adoption of agri waste management were extension agents should educate and demonstrate about latest technologies in agri waste management, promotion of group approach to manage agri waste, promotion of more number of custom hiring centers for easy access by small and marginal farmers at village level (Happy seeder, Turbo seeder), village level industries should be developed (vermi-compost).

Keywords: Agriwaste, management, adoption, constraints, suggestions

INTRODUCTION

India has the challenging task of ensuring food security to its growing population. Besides, farming in future has to be multi-functional and ecologically sustainable so that it can deliver ecosystem goods and services as well as livelihoods to producers and society. Hence farming should effectively address local, national and international challenges of food, water and energy insecurity; issues related to climate change; and degradation of natural resources. Agri waste management as an integral component, is an effective solution for sustainable development.

Every year India produces 550 million tonnes of agriculture waste (1). Agriculture waste management is a part, of the ecological cycle in which everything is cycled and recycled for maintaining the interdependent relationship the ecosystem. By waste management all the plant wastes are placed in the right place and right time for best utilization in order to convert into useful products and to control pollution.

METHODOLOGY

An Ex-post facto research design was adopted for the study. The State of Telangana was choosen since the researcher was familiar with local language and culture. Medak district of Telangana state was selected (i.e. District having maximum number of diversified crops)
mandals in the district and two villages from each mandal were selected using simple random sampling technique. Thus, a total of eight villages

The data from the respondents was collected with the help of an interview schedule. The data collected was analysed and interpretations were drawn based on results. The suitable statistical techniques were used for analysis of data.

RESULTS AND DISCUSSION

The data was collected from the respondents on the selected profile characteristics, constraints and suggestions were analysed, interpreted, and accordingly the following results and conclusion were drawn.

A. PROFILE CHARACTERISTICS OF THE RESPONDENTS

It is very important to scan the profile of farmers as it influences their awareness about agri waste management. Keeping this in view, an attempt was made to analyze the selected profile characteristics of the farmers.

1. Age

Age was operationalized as the chronological age of the respondent in terms of the total number of years completed at the time of the study. Data presented in table 1. shows that the majority (55.00%) of the respondents were belonged to middle age followed by old (25.00%) and young (20.00%) age.

Table 1. Distribution respondents according to age (n =120)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Age</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Young age (up to 35 years)</td>
<td>24</td>
<td>20.00</td>
</tr>
<tr>
<td>2.</td>
<td>Middle age (36-50 years)</td>
<td>66</td>
<td>55.00</td>
</tr>
<tr>
<td>3.</td>
<td>Old age (above 50 years)</td>
<td>30</td>
<td>25.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>120</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The profession of agriculture is predominantly practiced by the middle and old age farmers in the villages. Most of the time non-agricultural vocations or enterprises are sought after by the people. Youth preferred to opt more remunerative and less risky professions other than agriculture. The results were in accordance with the findings of Sunil (2) and Anuse (3).

2. Education

It was operationally defined as the formal schooling, an individual has undergone. Data presented in table 2 that majority of the farmers were educated up to primary school (26.66%) followed by illiterate (22.50%), high school (21.66%), functional literate (12.50%) intermediate (11.66%), under graduate (3.33%) and Post graduation and above (1.66%) respectively.

Table 2. Distribution of farmers according to their education (n =120)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Illiterate</td>
<td>27</td>
<td>22.50</td>
</tr>
<tr>
<td>2.</td>
<td>Functional literate</td>
<td>15</td>
<td>12.50</td>
</tr>
<tr>
<td>3.</td>
<td>Primary school</td>
<td>32</td>
<td>26.66</td>
</tr>
<tr>
<td>4.</td>
<td>High school</td>
<td>26</td>
<td>21.66</td>
</tr>
<tr>
<td>5.</td>
<td>Intermediate</td>
<td>14</td>
<td>11.66</td>
</tr>
</tbody>
</table>
6. Under graduation | 4 | 3.33
7. Post graduation and above | 2 | 1.66

Total | 120 | 100.00

It is evident from the above results that most of the farmers were found to be educated up to primary school and closely followed by illiterate.

This may be due to the discontinuation of education at primary level. Majority of the respondents being small and marginal farmers might not have gone for higher education because of their financial status and livelihood sustenance. Further, lack of higher school facilities and poor socio-economic status of respondents might be another reason for this trend. Hence, efforts are needed to provide better education facility in rural areas. Literacy campaigns must be taken up to create awareness about the facilities to the farmers. The results were in accordance with the findings of Sunil (2).

3. Farm size

It was operationalized as the number acres owned by the respondents at the time of conducting the study. Data presented in table 3. shows that the majority respondents had a small farm size of land (40.00%) followed by 26.66 per cent had marginal land holding, 20.83 per cent of respondents had small medium land holding, 12.50 per had medium land holding and none of them had large farm size.

Table 3. Distribution of respondents based on their farm size (n = 120)

<table>
<thead>
<tr>
<th>S. No</th>
<th>Farm size</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Marginal (Less than 1 ha)</td>
<td>32</td>
<td>26.66</td>
</tr>
<tr>
<td>2.</td>
<td>Small (Between 1 to 2 ha)</td>
<td>48</td>
<td>40.00</td>
</tr>
<tr>
<td>3.</td>
<td>Small-medium (Between 2 to 4 ha)</td>
<td>25</td>
<td>20.83</td>
</tr>
<tr>
<td>4.</td>
<td>Medium (Between 4 to 10 ha)</td>
<td>15</td>
<td>12.50</td>
</tr>
<tr>
<td>5.</td>
<td>Large (More than 10 ha)</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120</td>
<td>100.00</td>
</tr>
</tbody>
</table>

From the above results, it could be concluded that majority of the respondents had a small farm size, division of joint families into nucleous families might have resulted in fragmentation of land. The results were in accordance with the findings of Anuse (3).

4. Farming experience

It was operationalized as the number of years of experience a respondent had in farming and allied sectors. Data presented in table 4. shows that majority of the farmers had medium farming experience (56.66%), followed by high (22.50%) and low farming experience (20.83%).

Table 4. Distribution of respondents based on their farming experience (n = 120)

<table>
<thead>
<tr>
<th>S. No</th>
<th>Farming Experience</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Low (2-16)</td>
<td>25</td>
<td>20.83</td>
</tr>
<tr>
<td>2.</td>
<td>Medium (16-30)</td>
<td>68</td>
<td>56.66</td>
</tr>
<tr>
<td>3.</td>
<td>High (30-44)</td>
<td>27</td>
<td>22.50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120</td>
<td>100.00</td>
</tr>
</tbody>
</table>

From the above results, it could be concluded that, majority of the farmers had medium farming experience. This trend might be due to the fact that, majority (55.00%) of
the respondents were middle age group. It is evident that the farming experience is an important factor which influences the farmers to accept, evaluate and experiment the innovative technologies related to agri waste management activities. Hence, to improve the quality and richness of experience of farmers, the extension agencies need to take up extension programmes like trainings, demonstrations, meetings, exposure visits and group discussions etc., The same result was also reported by Afhia phieca (4).

5. Cropping intensity

It was operationally defined as the proportion of acres annually under different crops to the total cropped area, expressed in percentage. Data presented in the table 5. indicated that majority (51.66%) of farmers of were under medium category of cropping intensity followed by low (27.50%) and high (20.83%) categories.

Table 5. Distribution of farmers according to their cropping intensity (n=120)

<table>
<thead>
<tr>
<th>S. No</th>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Low</td>
<td>33</td>
<td>27.50</td>
</tr>
<tr>
<td>2.</td>
<td>Medium</td>
<td>62</td>
<td>51.66</td>
</tr>
<tr>
<td>3.</td>
<td>High</td>
<td>25</td>
<td>20.83</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The reason for the majority of farmers having medium cropping intensity, could be attributed to their small and marginal land holdings and lack of water resources for taking up more crops from same piece of land. The results were in accordance with the findings of Ashok kumar (5).

6. Cropping pattern

It was operationally defined as the number of different crops (seasonal, bi-seasonal, annual, biannual and perennial) grown by a respondent at a point of time. The results in the table 6 indicated that majority (51.70%) of farmers were under low category of cropping pattern followed by medium (28.30%) and high (20.00%) of categories.

Table 6. Distribution of farmers according to their cropping pattern (n=120)

<table>
<thead>
<tr>
<th>S.no</th>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>69</td>
<td>51.70</td>
</tr>
<tr>
<td>2</td>
<td>Medium</td>
<td>34</td>
<td>28.30</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>17</td>
<td>20.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120</td>
<td>100.00</td>
</tr>
</tbody>
</table>

From the above results, it could be concluded that, majority of farmers had low, cropping pattern the reason behind this majority of them were small and marginal farmers prefer to take up commercial crops. The results were in accordance with the findings of Hajare (6).

7. Infrastructure facilities

It was operationally defined as the, different types of agri waste management facilities available in the village or possessed by the farmers like, compost plant, vermi-compost unit, biogas plant, Silage making unit, transportation facility for waste, community waste collection center and others. It was evident from table 7 that, majority (71.66%) of the respondents had low infrastructure facilities followed by medium (24.16%) and high (4.16%) categories.

Table 7. Distribution of farmers according to their infrastructure facilities (n=120)

<table>
<thead>
<tr>
<th>S.no</th>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Due to the small land holdings and poor socio economic conditions respondents might have not preferred to have separate facilities for agri waste management on their farms. The results were in accordance with the findings of Raina (7).

Distribution of farmers according to their available infrastructure facilities of agri waste management

<table>
<thead>
<tr>
<th>S.no</th>
<th>Particulars</th>
<th>No. of Respondents</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compost plant</td>
<td>60</td>
<td>50.00</td>
</tr>
<tr>
<td>2</td>
<td>Vermi compost unit</td>
<td>6</td>
<td>5.00</td>
</tr>
<tr>
<td>3</td>
<td>Biogas plant</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>Silage making unit</td>
<td>3</td>
<td>2.50</td>
</tr>
<tr>
<td>5</td>
<td>Collective waste collection center</td>
<td>1</td>
<td>0.83</td>
</tr>
<tr>
<td>6</td>
<td>Transport facility</td>
<td>90</td>
<td>75.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120</td>
<td>100.00</td>
</tr>
</tbody>
</table>

8. Level of Aspiration

It was operationally defined as the individual conception of his future prospectus and expectation of future performance which is affected by desire to do well. It is evident from table 8 that, majority (40.00%) of the farmers belonged to low level of aspiration category followed by medium (35.00%) and high (25.00%) level of aspiration.

Table 8 Distribution of farmers according to their level of aspiration (n=120)

<table>
<thead>
<tr>
<th>S.no</th>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>48</td>
<td>40.00</td>
</tr>
<tr>
<td>2</td>
<td>Medium</td>
<td>42</td>
<td>35.00</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>30</td>
<td>25.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Majority of the farmers had low level of aspiration followed by medium and high. The reason might be majority of the farmers were having literacy level of primary school to illiterate, small land holdings with medium farm experience, low infrastructure facilities. All these might have led to low intensity of desire. The results were in accordance with the findings of Bhemappa (8).

9. Innovativeness

It was operationally defined as the degree to which an individual adopt agri waste management practices, relatively earlier than others in his social system. The findings presented in table 9 indicated that 51.66 per cent of the respondents had medium level of innovativeness followed by low (30.00%) and high (18.33%) level of innovativeness.

Table 9 Distribution of farmers according to their innovativeness (n=120)

<table>
<thead>
<tr>
<th>S.no</th>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>36</td>
<td>30.00</td>
</tr>
<tr>
<td>2</td>
<td>Medium</td>
<td>62</td>
<td>51.66</td>
</tr>
</tbody>
</table>
The possible reason for the above trend might be that the farmer with medium information seeking behavior were able to update their knowledge and skills from time to time and were ready to accept the new technologies. On the other side as the 22.50 per cent of the farmers were found to be illiterate with poor infrastructure facilities, might have not shown interest in trying new ideas in their farms. The results were in accordance with the findings of Raina (7).

10. Achievement motivation

It is operationally defined as the degree to which a respondent is oriented towards profit maximization and excellence in farming. The findings presented in table 10 indicated that 51.66 per cent of the respondents had medium level of motivation followed by low (30.00%) and high (18.33%) level of innovativeness.

<table>
<thead>
<tr>
<th>S.no</th>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>33</td>
<td>27.50</td>
</tr>
<tr>
<td>2</td>
<td>Medium</td>
<td>62</td>
<td>51.66</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>25</td>
<td>20.83</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The above results might be because of the reason that most of the respondents were less educated, not aware of better planning and goal setting for their farm activities due to fear failure. Similar results also reported by Shiv kumar (9).

11. Information seeking behavior

It was operationally defined as the frequency of contact or exposure of a farmers to different sources for obtaining information related to agri waste management practices and uses. The results in the table 11 indicated that, most of the farmers fell under the category of medium (50.00%) information seeking behavior followed by low (30.00%) and high (20.00%) categories.

<table>
<thead>
<tr>
<th>S.no</th>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>36</td>
<td>30.00</td>
</tr>
<tr>
<td>2</td>
<td>Medium</td>
<td>60</td>
<td>50.00</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>24</td>
<td>20.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The results indicated that majority of the farmers had medium, information seeking behavior which imply that, the farmers had access various information sources like neighbors, relatives, agriculture extension officer, agriculture officer, magazines, journals and news paper. Rest of those who noticed in low level of information seeking behavior might be less educated or illiterate. The results were in accordance with the findings of Gowda (10).

12. Training received

It was operationally defined as the number of trainings received by the respondents. It was measured in terms of number of trainings attended by the respondents as revealed by them at the time of interview. The results in the table 12 indicated that, majority of the
farmers fell under the category of low training received (72.66) followed by medium (24.16) and high (4.16) training received. This finding was in line with the findings of (Ramalakshmi Devi (11)).

Table 12 Distribution of farmers according to their Training received (n=120)

<table>
<thead>
<tr>
<th>S.no</th>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>86</td>
<td>72.66</td>
</tr>
<tr>
<td>2</td>
<td>Medium</td>
<td>29</td>
<td>24.16</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>5</td>
<td>4.16</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120</td>
<td>100.00</td>
</tr>
</tbody>
</table>

It could be due to the fact that farmers were not giving much importance to the utilization of agri waste in agriculture due to lack of practical knowledge about uses of agri waste. Thus extension agencies should try to impart more trainings on the technical aspects of agri waste management and its importance. This finding was in line with the findings of Prashanth, (12).

B. CONSTRAINTS AND SUGGESTIONS ELICITED BY THE RESPONDENTS IN AGRI WASTE MANAGEMENT

Table 13. Constraints elicited by the respondents in agri waste management (n=120)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Statement</th>
<th>F</th>
<th>%</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Decomposition of agri waste takes time and affects the germination of the crop</td>
<td>70</td>
<td>58.33</td>
<td>VI</td>
</tr>
<tr>
<td>2.</td>
<td>Non availability of labour for the agri waste management practices</td>
<td>103</td>
<td>85.30</td>
<td>II</td>
</tr>
<tr>
<td>3.</td>
<td>Agri waste management practices requires additional work and cost</td>
<td>110</td>
<td>91.66</td>
<td>I</td>
</tr>
<tr>
<td>4.</td>
<td>It is difficult to manage huge quantity of agri waste</td>
<td>84</td>
<td>70.00</td>
<td>III</td>
</tr>
<tr>
<td>5.</td>
<td>The returns from the adoption of agri waste management were less</td>
<td>62</td>
<td>51.66</td>
<td>VII</td>
</tr>
<tr>
<td>6.</td>
<td>Low preference of farmers for doing waste management practices</td>
<td>72</td>
<td>60.00</td>
<td>V</td>
</tr>
<tr>
<td>7.</td>
<td>Lack infrastructure facilities to manage the agri waste</td>
<td>76</td>
<td>63.33</td>
<td>IV</td>
</tr>
<tr>
<td>8.</td>
<td>Fear of increase in pest and disease attack due to agri waste incorporation</td>
<td>24</td>
<td>20.00</td>
<td>VIII</td>
</tr>
</tbody>
</table>

The data presented in the Table 1. indicated the major constraints expressed by the farmers in adoption of agri waste management practices were, agri waste management practices requires additional work and cost (13) (Rank I), non availability of labour for the agri waste management practices (Rank II), difficult to manage huge quantity of agri waste
decomposition of agri waste takes time and affects the germination of the crop (14) (Rank IV), low preference of farmers for doing waste management practices (Rank V), lack infrastructure facilities to manage the agri waste (Rank VI), The returns from the adoption of agri waste management were less (Rank VII) and fear of increase of pest and disease attack due to agri waste incorporation (Rank VIII).

Table 14. Suggestions elicited by the respondents in agri waste management (n=120)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Suggestions</th>
<th>F</th>
<th>%</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Extension agents should educate and demonstrate about latest technologies in agri waste management</td>
<td>95</td>
<td>79.16</td>
<td>I</td>
</tr>
<tr>
<td>2.</td>
<td>More Custom hiring centers may be promoted for easy reach of costly equipment for small and marginal farmers at village level (Happy seeder, Turbo seeder)</td>
<td>60</td>
<td>50.00</td>
<td>III</td>
</tr>
<tr>
<td>3.</td>
<td>Promote group approach of farmers to manage agri waste</td>
<td>65</td>
<td>54.16</td>
<td>II</td>
</tr>
<tr>
<td>4.</td>
<td>Village level industries should be developed.(vermi-compost)</td>
<td>54</td>
<td>45.00</td>
<td>IV</td>
</tr>
<tr>
<td>5.</td>
<td>Farmers should adopt different farming system to utilize crop waste as feed to livestock and livestock waste as a manure to crop</td>
<td>48</td>
<td>40.00</td>
<td>V</td>
</tr>
<tr>
<td>6.</td>
<td>Scientist should develop suitable chemicals (Decomposition/reduce pest attack) for waste management.</td>
<td>36</td>
<td>30.00</td>
<td>VI</td>
</tr>
<tr>
<td>7.</td>
<td>Establishing self-help groups and encouraging unemployed youths to take up custom hiring of conservation agriculture machineries as a profession.</td>
<td>12</td>
<td>10.00</td>
<td>VIII</td>
</tr>
<tr>
<td>8.</td>
<td>Development and establishment of on farm facilities for agri waste management.</td>
<td>18</td>
<td>20.00</td>
<td>VII</td>
</tr>
</tbody>
</table>

Suggestions expressed by farmers for enhancing adoption and overcome problems in agri waste management are presented in Table 2. Suggestions given by farmers in adoption of agri waste management in sequence are as follows: Extension agents should educate and demonstrate about latest technologies in agri waste management (Rank I), promote group approach of farmers to manage agri waste (Rank II) more custom hiring centers may be promoted for easy reach of costly equipment for small and marginal farmers at village level.
(Happy seeder, Turbo seeder) (Rank III), village level industries should be developed. (vermicompost) (Rank IV), farmers should adopt different farming system to utilize crop waste as feed to livestock and livestock waste as a manure to crop (Rank V), scientist should develop suitable chemicals (decomposition/reduce pest attack) for waste management, (Rank VI), development and establishment of on farm facilities for agri waste management (VII) and establishing self-help groups and encouraging unemployed youths to take up custom hiring of agriculture machineries and waste industries as a profession (VII)

Conclusion should be added

References:

