RESPONSE OF BABY CORN (Zea mays L.) TO LEVELS OF NITROGEN AND DETASSELING

ABSTRACT

A field experiment was conducted during rabi season of 2020-21 to study the effect of levels of nitrogen and detasseling on yield and economics of baby corn. The experiment was laid out in split plot design with three replications comprising of six main plot treatments (0, 40, 80, 120, 160 and 200 kg N ha\(^{-1}\)) and two sub plot treatments (with tassel and without tassel). Application of 160 kg N ha\(^{-1}\) produced 2.22 cobs plant\(^{-1}\), which was statistically similar with application of 200 kg N ha\(^{-1}\) (2.44). Application of 160 kg N ha\(^{-1}\) produced optimum weight (9.23 g cob\(^{-1}\)) of dehusked baby corn. Detasseled plots produced in higher number of cobs plant\(^{-1}\) (1.69) and heavier dehusked cobs (8.63 g) than the plants having tassel. The optimum yield of baby corn (2072 kg ha\(^{-1}\)) was obtained with application of 160 kg N ha\(^{-1}\). Detasseling resulted in 8.4 per cent higher production of dehusked baby corn as compared with plots having tassel. But, the plots with tassel produced 10.3 per cent higher yield of green fodder as compared to the crop without tassel. The highest net return of Rs 155144 ha\(^{-1}\) was obtained from the treatment receiving 160 kg N ha\(^{-1}\). Detasseled plots gave 9.97 per cent higher net profit than the plots with tassel.

Key words: Baby corn, Nitrogen, Detasseling, Yield, Economics

Introduction

Baby corn (Zea mays L.) is a type of maize in which immature cobs are harvested just after emergence of silk. Baby corn is consumed as a vegetable due to its appealing flavour and crispiness. Baby corn cultivation has a dual advantage as vegetable and green fodder. As a short duration crop, it can be comfortably accommodated in intensive cropping system (Das et al., 2008). Yield of baby corn is influenced by several factors including nutrient management. Among the nutrients, nitrogen plays a crucial role in deciding the productivity of both baby corn and green fodder. Asaduzzaman et al. (2014) obtained the highest yield (2.1 t ha\(^{-1}\)) of dehusked baby corn with application of 160 kg nitrogen per hectare. As baby corn is harvested before fertilization, the tassel has insignificant contribution towards final...
production. Rather, tassel diverts some of the plant nutrients to the unproductive male inflorescence thereby minimizing flow of nutrients to the cob. Hence, detasseling can enhance the yield by diverting plant nutrients to the young ears. Moreira et al. (2010) recorded more number of heavier ears in detasseled plants as compared with the crop with tassels. Carvalaho et al. (2002) also reported higher baby corn yield with removal of tassels. With this backdrop, an experiment was conducted to study the effect of levels of nitrogen and detasseling on yield and economics of baby corn cultivation.

Materials and methods

The field experimentation was taken up at the Research Farm of Department of Agronomy, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar-India during kharif season of 2020-21. The soil was sandy loam in texture with pH value of 5.6. The experiment was conducted in a split plot design with three replications having six main plots (0, 40, 80, 120, 160, 200 kg N ha\(^{-1}\)) and two sub plots (with tassel and without tassel). Farm yard manure was applied @ 5 t ha\(^{-1}\) at the time of final ploughing. The seeds were sown at a spacing of 40 cm x 20 cm. Basal application of 60 kg P\(_2\)O\(_5\) and 60 kg K\(_2\)O per hectare was done at the time of sowing. As per treatment requirement, 50 per cent of nitrogen was applied as basal fertilizer and the rest was top dressed at three weeks after sowing. The tassels were removed manually just after emergence in the treatment without tassel.

Results and discussion

Yield attributes

Cob length

The length of cob either with or without husk was significantly influenced by different levels of nitrogen and tassel removal. The longest cobs with husk (21.84 cm) was obtained with application of 200 kg N ha\(^{-1}\), which was significantly more than the length of cob (19.98 cm) with application of 160 kg N ha\(^{-1}\) (Table 1). There was enhancement of husked cob length by 9.3 per cent when 200 kg N ha\(^{-1}\) when compared with application of 160 kg N ha\(^{-1}\). When 200 kg N ha\(^{-1}\) was applied, there was a 9.3 percent increase in husk length compared to 160 kg N ha\(^{-1}\) application.

Application of 80 kg N ha\(^{-1}\) resulted in average cob length of 17.57 cm, which was statistically superior over the plots receiving 40 kg N ha\(^{-1}\) and 0 kg N ha\(^{-1}\). Obviously,
application of no nitrogen resulted in lowest cob length with husk (15.35 cm), but it was statistically at par with 40 application of N kg ha\(^{-1}\) (15.98 cm).

Removal of tassel had significant effect on length of cob with husk (Table 1). The plot having plants without tassel produced longest cobs (18.59 cm), which was 4.4 per cent longer than the plots accommodating plants with tassel. There was no interaction effect of nitrogen level and detasseling on length of cob with husk.

The treatment \(N_6\) (200 kg N ha\(^{-1}\)) produced the longest dehusked baby corn (9.15 cm), which was statistically comparable with \(N_5\) (160 kg N ha\(^{-1}\)) but significantly higher than the baby corn produced in all other treatments (Table 1). The length of dehusked baby corn with application of 120 kg N ha\(^{-1}\) was 8.51 cm, which was statistically comparable with the cobs obtained with application of 80 kg N ha\(^{-1}\) (8.41 cm). The length of dehusked cob at a nitrogen level of 80 kg ha\(^{-1}\) was 15.05 per cent higher than that obtained with application of nitrogen level of 40 kg N ha\(^{-1}\). The lowest cob length of 7.1 cm was recorded at a nitrogen level of 0 kg ha\(^{-1}\), which was statistically at par with the length of cob obtained by application of 40 kg N ha\(^{-1}\) (7.31 cm).

Detasseling had immensely contributed to the length of dehusked baby cob (Table ????). The length of dehusked baby corn in detasseled plants was 3.09 per cent more than the length of dehusked baby corn obtained from the plants with tassel. There was no interaction effect of nitrogen level and detasseling on length of cob without husk.

Cob girth

The cob girth after before or after dehusking was remarkably influenced by different doses of nitrogen application (Table 1). The maximum cob girth with husk was found in treatment \(N_6\) receiving 200 kg N ha\(^{-1}\), which was statistically at par with treatments of \(N_5\) (160 kg N ha\(^{-1}\)) and \(N_4\) (120 kg N ha\(^{-1}\)). The lowest value of cob girth with husk (7.45 cm) was recorded with zero nitrogen application. Similar trend was observed regarding effect of nitrogen level on length of dehusked baby corn. The maximum girth of dehusked cob (4.90 cm) was found in the treatment receiving 200 kg N ha\(^{-1}\), which was statistically at par with treatments receiving either 160 kg N ha\(^{-1}\) or 120 kg N ha\(^{-1}\) (Table 1). The lowest value of cob girth without husk (3.47 cm) was recorded with no nitrogen application.

Detasseling improved the cob girth either with or without husk. Removal of tassels produced maximum girth of baby corn with husk (8.37 cm) and without husk (4.34 cm), which were more than the girth of baby corn obtained from the tasselled plants. On an
average, the girth of dehusked baby corn was 51.5 per cent of the girth of baby corn having husk cover. There was no interaction effect of nitrogen level and detasseling on girth of cob with or without husk.

Duration of a crop plays an important role for efficient utilization of land in a cropping system by accommodating succeeding crop in time. The plants switch over to reproductive phase with the influence of inherent genetic characters, environmental factors and agronomic management practices. Application of nitrogen influenced the process of plant growth and hence influenced flower initiation in the plant. The process of physiological activities was accelerated due to enhanced rate of nitrogen application as evidenced from earliness in emergence of silk. Number of days required for 50 per cent silking was in the range of 55.8 to 61.2. Application of 200 kg N ha\(^{-1}\) minimized the number of days required for 50 per cent silking to 55.8, which was lowest among all other nitrogen level. Similar findings were reported by Wasnik et al. (2012), who recorded minimum days taken for tasseling and silking with application of 250 kg N ha\(^{-1}\). Application of 160 kg N ha\(^{-1}\) or 120 kg N ha\(^{-1}\) required 56.5 days for silking. Absence of nitrogen in the treatment receiving no nitrogen slowed down the plant growth process, which was reflected in maximum number of days (61.2) required for 50 per cent silking.

The process of physiological activities has direct bearing on yield attributing characters such as number and weight of baby corn. Production of diversified quantity of photosynthates due to varied dose of nitrogen was reflected in differential value of weight and number of baby corn. Enhancement in nitrogen level promoted formation of axillary cobs that has increased the cob count per plant and per hectare. There was significant increase in number of baby corn per plant up to 160 kg N ha\(^{-1}\). Maximum number of cobs per plant (2.44) was recorded with application of 200 kg N ha\(^{-1}\), which was statistically at par with the crop receiving 160 kg N ha\(^{-1}\) (2.22). Lack of nitrogen to the product resulted in an insufficient number (0.83) of cobs per plant, indicating production of more barren plants in absence of nitrogen application. There was 194 per cent increase in number of cobs per plant with provision of 200 kg Nha\(^{-1}\) as compared with non-nitrogen application. Assaduzzaman et al. (2014) also reported enhancement in number of ears per plant with increase in quantity of nitrogen application. Detasseling produced higher number of cobs per plant than the plants with tassel (Table 1). There was production of 8.33 per cent more number of baby corn per plant from the detasseled plants than plants with tassel.
There was enhancement in total cob count per hectare with increase in nitrogen level. Per hectare cob count was the highest (295.15 thousand ha\(^{-1}\)) with application of 200 kg N ha\(^{-1}\), which was statistically at par with the treatment receiving 160 kg N ha\(^{-1}\) (268.8 thousand ha\(^{-1}\)). The cob count was minimum (101.25 thousand ha\(^{-1}\)) in the plots not receiving any nitrogen from external sources. Detasseling had conspicuous influence on the number of cobs produced per hectare. The plots with detasseled plants produced 8.26 per cent more cobs per hectare than the plots with intact tassels (Table 1).

Effect of various nitrogen levels and detasseling was conspicuously visible on the weight of dehusked baby corn. The weight of dehusked baby corn increased linearly with increase in nitrogen level and attained the highest value of 10.94 g cob\(^{-1}\) with application of 200 kg N ha\(^{-1}\). Mehta et al. (2011) also obtained heaviest cobs with application of as high as 275 kg N ha\(^{-1}\). The crop receiving 160 kg N ha\(^{-1}\) produced dehusked baby corn with weight of 9.23 g cob\(^{-1}\), which was superior over application of 0, 40, 80 or 120 kg N ha\(^{-1}\). The lowest cob weight of 6.85 gram per cob was recorded with application of 0 kg N ha\(^{-1}\). Application of 200 kg N ha\(^{-1}\) resulted in 59.7 per cent heavier baby corn production as compared with the plots receiving non-nitrogen. The weight of the dehusked baby cob increased with removal of tassel. The dehusked cob weight (8.63 g cob\(^{-1}\)) obtained from the plants without tassel was 6.8 per cent higher than the dehusked cob weight (8.08 g) of the plants with tassel. Diversion of plant nutrients to the female flower in the detasseled plots might have contributed for increase in weight of baby corn. Besides, absence of apical dominance in detasseled plants might be the reason for better growth of baby cob. Moreira et al. (2010) also obtained more number of heavier baby corn from the detasseled plants as compared with plants with tassel.

Baby corn yield

Yield of baby corn is determined by various yield attributing parameters such as number of baby corn per plant and weight of individual baby corn. Variation in levels of nitrogen and detasseling had substantial effect on baby corn yield. The baby corn yield without husk was the maximum (2073 kg ha\(^{-1}\)) with application of 200 kg N ha\(^{-1}\), which was comparable with the yield obtained with application of 160 kg N ha\(^{-1}\) (2072 kg ha\(^{-1}\)). Assaduzzaman et al. (2014) also obtained maximum baby corn yield with application of 160 kg N ha\(^{-1}\). The lowest yield of dehusked baby cob (461.1 kg ha\(^{-1}\)) was attained in the plots receiving zero nitrogen, which was at par with the yield recorded by application of 40 kg N ha\(^{-1}\) (Table 1). The highest level of nitrogen application (200 kg N ha\(^{-1}\)) produced 349.7 per
cent more dehusked baby corn than the control plot receiving nonnitrogen. Removal of tassel resulted in higher baby corn production due to enhanced flow of nutrients to the female flowers. Detasseled plots yielded 1393 kg ha$^{-1}$ baby corn, which was 8.4 per cent higher than the field having intact tassels. It may be due to 6.8 per cent heavier cobs and 8.3 percent more no. of cobs per hectare obtained from detasseled plots than the plots with tassel. Caravalaho et al. (2002) also reported higher yield of baby corn from the detasseled crop.

Economics

The net profit is the most important factor for deciding adoption of any crop. Various levels of nitrogen along with detasseling had varied result with respect to net profit. Increase in level of nitrogen enhanced the yield, which ultimately added to the net profit. The highest net return of Rs 155144 ha$^{-1}$ was obtained from the crop receiving 160 kg N ha$^{-1}$, which was closely followed by net return received by application of 200 kg N ha$^{-1}$. Earlier, Roy et al. (2019) obtained maximum net return of Rs1,46,135 per hectare with application of 120kg N ha$^{-1}$. There was minimum net return of Rs 1132 per hectare obtained in the treatment receiving nonnitrogen. Additional labour requirement for detasseling operation enhanced the cost of cultivation in detasseled plots, but the yield augmentation nullified the effect. Detasseled plots gave the highest net return of Rs 88918 ha$^{-1}$, which was 9.97 per cent more than the net profit obtained from the plots with tassels due to more yield of baby corn.

Application of 160 kg N ha$^{-1}$ provided maximum net profit. Detasseling also resulted in the maximum net profit. From the results of this experiment, it can be inferred that application of 160 kg N ha$^{-1}$ along with detasseling may be advocated to obtain optimum yield and maximum profit from baby corn production.

COMPETING INTERESTS DISCLAIMER:

Authors have declared that no competing interests exist. The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

References

Table 1. Effect of nitrogen level and detasseling on yield and yield attributes of baby corn

<table>
<thead>
<tr>
<th>Treatments</th>
<th>No. of cobs per plant</th>
<th>No. of cobs ('000 ha⁻¹)</th>
<th>Dehusked cob weight (g)</th>
<th>Dehusked baby corn yield (kg ha⁻¹)</th>
<th>Green fodder yield (t ha⁻¹)</th>
<th>Net profit (Rs ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.83</td>
<td>101.25</td>
<td>6.85</td>
<td>461</td>
<td>12.43</td>
<td>1132</td>
</tr>
<tr>
<td>40</td>
<td>1.02</td>
<td>124.26</td>
<td>7.00</td>
<td>683</td>
<td>13.58</td>
<td>21185</td>
</tr>
<tr>
<td>80</td>
<td>1.41</td>
<td>171.65</td>
<td>7.90</td>
<td>1093</td>
<td>18.89</td>
<td>61700</td>
</tr>
<tr>
<td>120</td>
<td>1.83</td>
<td>221.88</td>
<td>8.18</td>
<td>1652</td>
<td>20.18</td>
<td>116036</td>
</tr>
<tr>
<td>160</td>
<td>2.22</td>
<td>268.80</td>
<td>9.23</td>
<td>2072</td>
<td>24.88</td>
<td>155144</td>
</tr>
<tr>
<td>200</td>
<td>2.44</td>
<td>295.15</td>
<td>10.94</td>
<td>2073</td>
<td>27.45</td>
<td>154135</td>
</tr>
<tr>
<td>SE(m) +</td>
<td>0.123</td>
<td>15.279</td>
<td>0.235</td>
<td>72.1</td>
<td>1.910</td>
<td></td>
</tr>
<tr>
<td>CD (0.05)</td>
<td>0.389</td>
<td>48.142</td>
<td>0.739</td>
<td>227.0</td>
<td>6.017</td>
<td></td>
</tr>
</tbody>
</table>

Detasseling

<table>
<thead>
<tr>
<th>Treatments</th>
<th>No. of cobs per plant</th>
<th>No. of cobs ('000 ha⁻¹)</th>
<th>Dehusked cob weight (g)</th>
<th>Dehusked baby corn yield (kg ha⁻¹)</th>
<th>Green fodder yield (t ha⁻¹)</th>
<th>Net profit (Rs ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>With tassel</td>
<td>1.56</td>
<td>189.35</td>
<td>8.08</td>
<td>1285</td>
<td>20.53</td>
<td>80859</td>
</tr>
<tr>
<td>Without tassel</td>
<td>1.69</td>
<td>204.99</td>
<td>8.63</td>
<td>1393</td>
<td>18.61</td>
<td>88918</td>
</tr>
<tr>
<td>SE(m) +</td>
<td>0.024</td>
<td>3.960</td>
<td>0.112</td>
<td>10.3</td>
<td>0.140</td>
<td></td>
</tr>
<tr>
<td>CD (0.05)</td>
<td>0.074</td>
<td>12.203</td>
<td>0.344</td>
<td>31.6</td>
<td>0.431</td>
<td></td>
</tr>
</tbody>
</table>