Phytochemical analysis of some medicinal plants used for the management of reproductive health care problems in **the West Region** in Cameroon

Abstract

Reproductive diseases are various disorders, conditions that negatively affecting human reproductive systems in many countries. Indeed, this study was carried out to analyze chemical constituents of some medicinal plants used to treat reproductive organs, diseases in Bamboutos division, West of Cameroon. 45 plants samples were collected from their natural habitats in some villages of the above cited division. A study was conducted according to standard procedures in the laboratory of Organic Chemistry and Natural Substances of the University of Dschang. Polyphenols were revealed in all screening medicinal plant extracts, while, flavonoids were found in most of the studied plant extracts except for those obtained from *Dioscorea dumetorum*. Triterpens were present in 40 plants, saponins and sterols were respectively found in 33 and 32 plants; whereas, alkaloids were only present in 15 plants. This work showed that the plants used to alleviate human reproductive ailments in some locality of the west region in Cameroon are rich in bioactive compounds. These compounds are known to manage human reproductive diseases. Therefore, this finding supported the uses of these plant species for the treatment of human reproductive diseases. Furthermore, appropriate conservation of such valuable medicinal plant species is required.

Keywords: reproductive problems, west region Cameroon, phytochemical, medicinal plants

Introduction

Medicinal plants play an essential role in a healthy being of individuals, as they are used to treat different diseases all over the world and are a source of many effective and powerful drugs [1,2]. Drugs from plants are easily available, less expensive, safe, efficient and rarely have side effects [3]. Medicinal plants contain secondary metabolites like alkaloids, flavonoids, saponins, tannins and glycosides which are used against different diseases and relieve pain [2, 4, 5]. Many studies have shown the therapeutic activities of secondary metabolites obtained from medicinal plants [2, 6, 7, 8]. There are diverse documents which
have reported the ethnopharmacological properties of the plants [2, 9, 10]. These plants are also contemplated as a rich source of ingredients that can be used in the synthesis and production of modern drugs [11]. Plants consist of various kinds of chemical constituents known as phytoconstituents [12]. Moreover, plants derived substances have recently become of great interest due to their versatile use [13]. Indeed, the long term utilization of plants in traditional medicine is a sure indication of their value and usefulness in the future. In Africa like other developing countries, about 80% of the population depend on the use of herbal medicine for health care [14]. Therefore, such plants should be investigated to better understand their properties, safety and efficacy [14, 15]. According to Ndam et al. [14], the pharmacological and biological properties of organic substances from many indigenous plants have been well understood over the last few decades. For example, polyphenols have been associated with antioxydant [16, 17]; anticancer [18], antimicrobial (Louw, 2002); terpenoids exhibit anti-inflammatory antiviral and antibacterial activities [20, 21]. Terpenoids exhibit various important pharmacological activities such as anti-inflammatory, anticancer, antimalarial, antiviral and antibacterial [22]. Alkaloids are used as anesthetic agents and are found in medicinal plants [23]. Much more, among the 120 active compounds currently isolated from the higher plants that are widely used in modern medicine today, 80% show positive correlation between their modern therapeutic use and the traditional use of the plants from which they are derived [24].

In Cameroon, medicinal plants play a great role in human life. From ancient time medicinal plants have been used for various diseases. The medicinal value of these plants lies in its bioactive constituents [25]. The literature survey suggests that worldwide more than 50,000 plant species are successfully used for medicinal purposes [26]. Various active ingredients like alkaloids, glycosides, saponins, essential oils, tannins and mucilages have been isolated from various plant parts such as roots, stems, leaves, barks, fruits and seeds; these phytochemicals determine a definite curing physiological response in the treatment of various human diseases [27]. Such as reproductive ailments. In view of the important role of phytochemicals and their wide application for a variety of diseases, it is necessary to provide scientific data on phytochemical compounds of some plants used to manage reproductive problems in Cameroon.

Materials and Methods

Plant sample collection
Plant samples used to treat reproductive organs, diseases were collected from their natural habitats in some villages of Bamboutos Division, West of Cameroon during the month of November 2009. They were identified and confirmed at the National Herbarium of Cameroon and voucher specimen were kept in the Department of Plant Biology, University of Dschang. The list of plants with the vernacular names, parts used, family and traditional uses are shown in table 1.

Different plant parts were washed with clean water, cut into small pieces and air dried under natural conditions for two weeks. The dry plant materials were powdered using a mechanical grinder and 200g of plant extract were macerated with 500 ml of ethanol for 48 hours at room temperature. Maceration intends to soften and break the plant’s cell wall to release the soluble phytoconstituents [28, 29]. The extracts were filtered through whatman N°1 filter paper and then concentrated under vacuum using a rotary evaporator at 68°C. Concentrated extracts were stored in sterile bottles at 4°C for further use. Laboratory activities were performed in the laboratory of organic chemistry and natural substances, University of Dschang.

Table 1: List of plants with vernacular names, parts used and traditional uses

<table>
<thead>
<tr>
<th>Plant samples/Family</th>
<th>Vernacular names</th>
<th>Parts used</th>
<th>Traditional uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthus montanus /Acanthaceae</td>
<td>Mégigoum, mounamenang, megigor</td>
<td>Wp</td>
<td>Irregular menstruation, male and female infertility, gonorrhea, leucorrhoea, venereal diseases, vaginal cleansing</td>
</tr>
<tr>
<td>Ageratum conyzoides /Asteraceae</td>
<td>Tsomamou, tchouamou, nekouadar, soumomo</td>
<td>Wp</td>
<td>Vaginal cleansing, inflammation of vagina</td>
</tr>
<tr>
<td>Aloe barbadense /Asphodelaceae</td>
<td>Melan</td>
<td>L</td>
<td>Male and female infertility, male impotence, dysmenorrhoea, vaginal cleansing</td>
</tr>
<tr>
<td>Bridelia scleroneura</td>
<td>Mezene</td>
<td>B</td>
<td>Female infertility, dysmenorrhoea, amenorrhoea</td>
</tr>
</tbody>
</table>
Euphorbiaceae

- **Bryophyllum pinnatum**
 - Vernacular names: Nezouk, lezouk
 - Parts used: L
 - Traditional uses: Dysmenorrhoea, leucorrhoea, vaginal cleansing

- **Cissus quadrangularis**
 - Vernacular names: Djicmetsi
 - Parts used: S
 - Traditional uses: Male and female infertility, venereal diseases, vaginal cleansing

- **Crassocephalum mannii**
 - Vernacular names: Neponlou, poupou
 - Parts used: L
 - Traditional uses: Helping delivery, leucorrhoea, dysmenorrhoea

Crassulaceae

- **Crinum natans**
 - Vernacular names: Melan panguè, malan pazuè
 - Parts used: Wp
 - Traditional uses: Male infertility

Acanthaceae

- **Croton macrostachyus**
 - Vernacular names: Tsam, tsa’a
 - Parts used: B
 - Traditional uses: Male and female infertility, dysmenorrhoea, venereal diseases

- **Cyphostemma adenaucole**
 - Vernacular names: Pioctè
 - Parts used: S
 - Traditional uses: Female infertility, dysmenorrhoea, venereal diseases, vaginal cleansing, ovarian and uterus cysts

- **Dioscorea dumetorum**
 - Vernacular names: Neliock, zouck
 - Parts used: L
 - Traditional uses: Venereal diseases

Asteraceae

- **Dyschoriste perrottettii**
 - Vernacular names: Mekonbi
 - Parts used: Wp
 - Traditional uses: Leucorrhoea, dysmenorrhoea

Amaryllidaceae

- **Crinum natans**
 - Vernacular names: Melan panguè, malan pazuè
 - Parts used: Wp
 - Traditional uses: Male infertility

Vitaceae

- **Elaephorbia drupifera**
 - Vernacular names: Machoir
 - Parts used: L
 - Traditional uses: Male and female infertility, viral and venereal diseases, vaginal cleansing, prostate inflammation, promoting lactation in women after giving birth, oligospermia

PU: Parts used, **Wp**: whole plant; **L**: leaves; **B**: bark; **S**: stem; **SL**: stem + leaves; **T**: tubers; **Fr**: fruits.

Table 1: List of plants with vernacular names, parts used and traditional uses (continued)

<table>
<thead>
<tr>
<th>Plant samples/Family</th>
<th>Vernacular names</th>
<th>Parts used</th>
<th>Traditional uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eremomastax speciosa / Acanthaceae</td>
<td>Pankuzem, panzemok, piezemmok, kouokmegar</td>
<td>L</td>
<td>Post-partum pain, male and female infertility, gonorrhea, leucorrhoea, dysmenorrhoea, irregular menstruation</td>
</tr>
<tr>
<td>Euphorbia lateriflora / Euphorbiaceae</td>
<td>Nepimou</td>
<td>S</td>
<td>Vaginal cleansing, male and female infertility, viral and venereal diseases, prostate inflammation, promoting lactation in women after giving birth, oligospermia</td>
</tr>
<tr>
<td>Plant samples/Family</td>
<td>Vernacular names</td>
<td>Parts used</td>
<td>Traditional uses</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Ficus exasperata /Moraceae</td>
<td>Kokguème</td>
<td>L</td>
<td>Ovarian and uterus cysts, fibroids</td>
</tr>
<tr>
<td>Ficus sur /Moraceae</td>
<td>Gack</td>
<td>B</td>
<td>Venereal diseases</td>
</tr>
<tr>
<td>Furcraeae foetida /Agavaceae</td>
<td>Melan</td>
<td>L</td>
<td>Male and female infertility, venereal diseases</td>
</tr>
<tr>
<td>Gardenia ternifolia /Rubiaceae</td>
<td>Metoucbouor, metobouo</td>
<td>B</td>
<td>Male and female infertility, viral and venereal diseases, vaginal cleansing, ovarian and uterus cysts, prostate inflammation</td>
</tr>
<tr>
<td>Impatiens burtonii /Balsaminaceae</td>
<td>Wp</td>
<td></td>
<td>Oligospermia, leucorrhoea, dysmenorrhoea, vaginal cleansing</td>
</tr>
<tr>
<td>Ipomoea batatas /Convolvulaceae</td>
<td>Kopgoua, voukope</td>
<td>SL</td>
<td>Venereal diseases</td>
</tr>
<tr>
<td>Kigelia africana /Bignoniaceae</td>
<td>Sacktare, vinvi</td>
<td>B/Fr</td>
<td>Vaginal cleansing, male and female infertility, inflammation of the vagina, venereal diseases, prostate inflammation</td>
</tr>
<tr>
<td>Laggera alata /Asteraceae</td>
<td>Depack-kenan</td>
<td>L</td>
<td>Venereal diseases, leucorrhoea, dysmenorrhoea</td>
</tr>
<tr>
<td>Lippia multiflora /Verbenaceae</td>
<td>Bounkmong</td>
<td>L</td>
<td>Female infertility, leucorrhoea, dysmenorrhoea</td>
</tr>
</tbody>
</table>

PU: Parts used; Wp: whole plant; L: leaves; B: bark; S: stem; SL: stem + leaves; T: tubers; Fr: fruits.
<table>
<thead>
<tr>
<th>Plant samples/Family</th>
<th>Vernacular names</th>
<th>Parts used</th>
<th>Traditional uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thespesia populnea /Malvaceae</td>
<td>Kepfou, tekue</td>
<td>L</td>
<td>Male and female infertility, venereal diseases, leucorrhoea, dysmenorrhoea, inflammation of the vagina</td>
</tr>
<tr>
<td>Vernonia ambigua /Asteraceae</td>
<td>Negi-gouan</td>
<td>L</td>
<td>Vaginal cleansing, male and female infertility, viral and venereal diseases, inflammation of the uterus</td>
</tr>
<tr>
<td>Vernonia inulaefolia</td>
<td>Vougnang.</td>
<td>T</td>
<td>Vaginal cleansing, male and female infertility, viral and venereal diseases, inflammation of the uterus</td>
</tr>
</tbody>
</table>
Asteraceae

megoutsop

Vernonia sp

Depack-kenan

Vernonia sp

L

Venereal diseases, male impotence

Vitellaria paradoxa

Saloboué, sack-kouket

Vitellaria paradoxa

B

Promoting lactation in women after giving birth

Vitex doniana

Vounetane

Vitex doniana

B

Postpartum hemorrhage

Zehneria scabra

Liepliep, laplap, leliep

Zehneria scabra

SL

Preventing abortion or spurious labour

PU: Parts used, Wp: whole plant; L: leaves; B: barks; S: stems; SL: stem + leaves; T: tubers; Fr: fruits.

Phytochemical screening

Phytochemical screening to detect the presence of secondary metabolites such as polyphenols, flavonoids, saponins, alkaloids, triterpenes and sterols was carried out following the standard procedures described by [30, 31, 32, 33, 34].

Test for saponins

Two grams of the extracts were dissolved in 80 ml of distilled water in a test tube and then warmed for 5 minutes. After cooling, the mixture was filtered and shaken vigorously for 2 minutes and allowed to stand for 30 minutes. The formation of stable foam indicated the presence of saponins [30, 31, 32, 33, 34].

Test for flavonoids

For the confirmation of flavonoid in the selected plants, 5 mg of each extract was dissolved in 5 ml of ethanol. The mixture was then treated with 0.5 g of magnesium chips and three drops of concentrated sulphuric acid (H\textsubscript{2}SO\textsubscript{4}). The appearance of pink or orange coloration within few minutes indicated the presence of flavonoid. Nevertheless, a pink-orange color indicates the presence of flavones; whereas the presence of flavonols and flavanones where respectively indicated by pink-purplish and red colors [30, 31, 32, 33, 34].
Test for alkaloids

For alkaloids determination, five milligrams of each extract were placed in a test tube containing 3 ml of H₂SO₄ 1%. The mixture was then warmed in a water bath for 5 minutes and filtered. Five drops of Meyer’s reagent were added to the filtrate extracts. The presence of white precipitates or a cloudy phase indicated the presence of alkaloids [30, 31, 32, 33, 34].

Test for sterols and triterpens

Five milligrams of each extract were dissolved in 3 ml of chloroform, after that, equal volume of chloroform, acetic anhydride and concentrated sulphuric acid were respectively added to the mixture solution. The color change was observed immediately and later; blue-green indicates steroids while pink, red or purple colour indicates the presence of triterpens [30, 31, 32, 33, 34].

Test for polyphenols

To determine the presence of polyphenols, 1 g of the powder of each plant was boiled with 15 ml of distilled water in a test tube for 15 minutes, then filtered. Two drops of iron cyanide were added to the filtrate solution; the appearance of blue color reveals the presence of polyphenols [30, 31, 32, 33, 34].

Data analysis

The change of color was observed when the test reagent was added to the prepared sample for the phytochemical test. The result was recorded as more abundant (+++), abundant (++), present (+) or absent (-) depending on the outcome of the test. All experiments were done in triplicates.

Results and discussion

The result of the phytochemical analysis is tabulated in table 2. The phytochemical of selected medicinal plant investigation showed the absence or the presence of saponin, alkaloids, polyphenols, sterols, flavonoids and triterpens. Polyphenols were present in all screened medicinal plant extracts. Flavonoids were found in most of the studied plant extracts except for those obtained from Dioscorea dumetorum. Triterpens were present in 40 plants,
Saponins and sterols were respectively found in 33 and 32 plants; whereas, alkaloids were only present in 15 plants (Table 2).

Table 2: Phytochemical analysis of screened medicinal plant species

<table>
<thead>
<tr>
<th>Plantes</th>
<th>PU</th>
<th>Sap</th>
<th>Alk</th>
<th>Fla</th>
<th>Pol</th>
<th>Tri</th>
<th>Ste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthus montanus /Acanthaceae</td>
<td>PE</td>
<td>++</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ageratum conyzoides /Asteraceae</td>
<td>PE</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>Aloe barbadense /Asphodelaceae</td>
<td>F</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Bridelia scleroneura /Euphorbiaceae</td>
<td>E</td>
<td>+++</td>
<td>-</td>
<td>+</td>
<td>+++</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>Bryophyllum pinnatum /Crassulaceae</td>
<td>F</td>
<td>+</td>
<td>-</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>+/-</td>
</tr>
<tr>
<td>Cissus quadrangularis /Vitaceae</td>
<td>T</td>
<td>+++</td>
<td>-</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Crassocephalum mannii /Asteraceae</td>
<td>F</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Crinum natans /Amaryllidaceae</td>
<td>PE</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Croton macrostachyus /Euphorbiaceae</td>
<td>E</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cyphostemma adenaucule /Vitaceae</td>
<td>T</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dioscorea dumetorum /Dioscoreaceae</td>
<td>F</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dyschoriste perrottettii /Acanthaceae</td>
<td>PE</td>
<td>+</td>
<td>+/-</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Entada abyssinica /Fabaceae</td>
<td>E</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Elaephorbia drupifera /Euphorbiaceae</td>
<td>F</td>
<td>+</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Eremomastax speciosa /Acanthaceae</td>
<td>F</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Euphorbia lateriflora /Euphorbiaceae</td>
<td>T</td>
<td>+</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ficus exasperata /Moraceae</td>
<td>F</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Ficus sur /Moraceae</td>
<td>E</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Furcreae foetida /Agavaceae</td>
<td>F</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gardenia ternifolia /Rubiaceae</td>
<td>E</td>
<td>-</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Impatiens burtonii /Balsaminaceae</td>
<td>PE</td>
<td>+</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Ipomoea batatas /Convolvulaceae</td>
<td>TF</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Kigelia africana /Bignoniaceae</td>
<td>E</td>
<td>-</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>+/-</td>
<td></td>
</tr>
<tr>
<td>Lagera alata /Asteraceae</td>
<td>F</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lippia multiflora /Verbenaceae</td>
<td>F</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+/-</td>
<td>+/-</td>
</tr>
</tbody>
</table>
Table 2: Phytochemical analysis of screened medicinal plant species (end)

<table>
<thead>
<tr>
<th>Scientific names</th>
<th>Part used</th>
<th>Sap</th>
<th>alk</th>
<th>Flav</th>
<th>Pol</th>
<th>Tri</th>
<th>Ste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markhamia tomentosa /Bignoniaceae</td>
<td>E</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
<td>+/-</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Piper capense /Piperaceae</td>
<td>TF</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Polygonium nepalenses /Polygonaceae</td>
<td>PE</td>
<td>+</td>
<td>-</td>
<td>+++</td>
<td>+++</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Polyscias fulva /Araliaceae</td>
<td>E</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Psychotria viridis /Rubiaceae</td>
<td>E</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Rauvolfia vomitoria /Apocynaceae</td>
<td>E</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+/-</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>Sansievieria liberica /Dracaenaceae</td>
<td>F</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Senna alata /Fabaceae</td>
<td>F</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Smilax kraussiana /Smilacaceae</td>
<td>TF</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Solanum torvum /Solanaceae</td>
<td>F</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sonchus oleraceus /Asteraceae</td>
<td>F</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Spathodea campanulata /Bignoniaceae</td>
<td>E</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Stereospermum accuminatissimum /Bignoniaceae</td>
<td>E</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Thespisia populnea /Malvaceae</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vernonia ambigua /Asteraceae</td>
<td>F</td>
<td>+++</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vernonia inulaefolia /Asteraceae</td>
<td>Tu</td>
<td>+++</td>
<td>-</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Vernonia sp /Asteraceae</td>
<td>F</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Vitellaria paradoxa /Sapotaceae</td>
<td>E</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vitex doniana /Verbenaceae</td>
<td>E</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>Zehneria scabra /Cucurbitaceae</td>
<td>TF</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

PU: Parts used. Wp: whole plant; L: leaves; B: barks; S: stems; SL: stem + leaves; T: tubers; Fr: fruits; Alk: alkaloids; Fla: flavonoids; Pol: polyphenols; Tri: triterpens; Ste: sterols; Sap: saponins; (+++): high; (++): moderate; (+): low and (-): absent.
Discussion

Medicinal herbs have been discovered and used in traditional medicine practices since immemorial times. Plants synthesize hundreds of chemical constituents for defence against insects, fungi and diseases [35]. Chemical constituents of plants are highly divided into primary and secondary groups according to their activity in plants metabolism. Primary groups contain common proteins, amino acids, common sugars and chlorophylls pigments. Whereas, secondary metabolites are made of phenolic compounds, saponins, tannins, alkaloids and others [36, 37]. Medicinal value of plants specifically depend on the bioactive compounds which are found in parts of the plants. They give a precise physiological action on human body [36, 38]. The phytochemical screening of the 45 medicinal plants studied showed that these plants contained saponin, alkaloids, polyphenols, sterols, flavonoids and triterpens, and all these compounds were found to be present in Aloe barbadense, Dyschoriste perrottettii, Laggera alata, Lippia multiflora, Piper capense, Solanum torvum and Vitellaria paradoxa. The richness of the cited plants is in accordance with the findings of others researchers. For instance, this result agrees with the finding of Namadine et al. [39] who reported that stem barks extracts of Vitellaria paradoxa contains saponin, alkaloids, polyphenols, sterols, flavonoids and triterpens; the works of [40] in different organs of the genus Lippia (L. nodiflora, L. graveolens, L. Citriodora, L. alba, L. javanica et L. scaberrima); the study of [41] in Solanum torvum fruits; the investigations of [42, 43, 44] in some species of the genus Piper (P. capense, P. longum, P. nigrum, P. cubeba etc.). Dééléké Koko et al. [45] reported that the galactogenic properties of medicinal plants are not the result of only one or two chemical compounds, but the result of the synergetic interaction of chemical constituents. These authors sipulated that, saponins, tannins, alkaloids and flavonoids may be responsible for increasing prolactin content in blood, and may also contribute for lactation stimulation. The richness of these plants in chemical compounds, could justify their uses in the treatment of more than one affection of the reproductive system in the study area. For example, leaves of Aloe barbadense are used in the study locality to treat dysmenorrhoea, male and female infertility and vaginal cleansing. Leaves of Dyschoriste perrottettii are used to cure dysmenorrhoea and leucorrhoea. Leaves of Laggera alata are used for dysmenorrhoea, leucorrhoea and venereal diseases. Stems of Piper capense intervened for pelvic pains and postpartum haemorrhage treatment. Lippia multiflora leaves are used in the research area to treat female infertility, leucorrhoea and dysmenorrhoea. Multiple uses of plants may depend on their wealth in secondary metabolites. It has been
demonstrated for many years by different researchers, that secondary metabolites exhibit biological activity such as antibacterial, antitumour, anthelmintic activity and effects on the central nervous system [46, 47, 48, 49, 50, 51, 52]. Polyphenols were present in all screened medicinal plants extracts. Flavonoids were found in most of the studied plants extracts except for those obtained from Dioscorea dumetorum. Triterpens were present in 40 plants, saponins and sterols were respectively found in 33 and 32 plants; whereas, alkaloids were only present in 15 plants (Table 2). The presence of polyphenols in all the studied plants extracts may be explained by the fact that, they are found ubiquitously in plants and they are generally involved in defense against ultraviolet radiation or aggression by pathogens; in the last decade, there has been much interest in the potential health benefits of dietary plant polyphenols as antioxidants. Epidemiological studies and associated meta-analyses strongly suggest that long term consumption of diets rich in plant polyphenols offer protection against development of cancers, cardiovascular diseases, diabetes, osteoporosis and neurodegenerative diseases [53, 54]. Moreover, Mboosso et al. [18] have shown that polyphenols such as isoflavones, flavones, glucosides and anthocyanin inhibit the action of breast and prostate cancer cells. Louw [19] has shown that polyphenols originate from the extracts of Piper capense exhibited antimicrobial activity. Findings of Usang et al. [55] revealed that polyphenolic compounds present in Ficus exasperata leaves extracts, inhibit activity of 17α-hydroxylase involved in testosterone synthesis. However, polyphenols were reported to cause the constriction of the ductus arteriosus which may affect the fetus if used in excess [56, 57]. Thus pregnant women should avoid medicinal plants rich in polyphenols.

Flavonoids were studied and found to contain antimicrobial, antioxidant and detoxification activities, and their antioxidant properties are due to their abilities to scavenge free radicals and to chelate metal ions [57]. Sharaibi et al. [58] revealed that, most diseases involved with some reproductive systems disorders are as a result of oxidative stresses caused by free radicals. This compound were identified in most of the tested plants extracts except Dioscorea dumetorum. This may justify the use of some of these plants for the treatment vaginal cleansing, male and female infertility, viral and venereal diseases, prostate inflammation, promoting lactation in women after giving birth, oligospermia. Flavonoids are also known to boost immunity by increasing white blood cell count [56, 57]; possesses alpha-glucosidase properties, antioxidant, anti-inflammatory, antiproliferative and anticarcinogenic activities [59, 60, 61, 62]. It has been also reported that flavonoids help to stop threatened miscarriage due to their biological function of protection against microbes [63]. Therefore, the presence of
flavonoids in most of the studied plants may suggest the ability to act as antioxidant against the free radicals caused by reproductive disorders, the antimicrobial and anti-inflammatory capacities. The absence of flavonoids in *Dioscorea dumetorum* extracts is in contrast with the finding of Okoroafor and Iborida [64] in Nigeria. The difference might be due to soil content, geographical area, seasons of plant collection, plant parts, and growth stage of the plants [64].

Triterpens were found in 40 plants. It’s a natural compound with various medical properties and found in both plants and animals [65]. Among natural products that mediate antagonistic and beneficial interactions within the organism, terpene play a variety of roles. They protects many living organisms like microorganisms, animals and plants from abiotic and biotic stresses [65]. Living organisms use terpene for multiple reasons like medicinal purposes and communications about food, mates, or enemies [65]. On the other hand, triterpenoids have been reported to be used as anti-inflammatory, analgesic, antipyretic, hepatoprotective, cardiotonic, sedative, tonic effects, antioxidant, antimicrobial, antiviral, antiallergic, antiangiogenic and spasmylytic [66, 67, 68, 69]. Moreover, triterpenoids have been reported to exhibit cytotoxicity against a variety of cancer cells without manifesting any toxicity in normal cells [67, 68, 69].

Oliver-Bever [71] (1986) and Okwu [72] had earlier reported that saponins have antibiotic properties and so help the body to fight infections and microbial invasion. Steroidal compounds are known to behave like hormones. Structurally they are similar. These compounds were respectively found in 33 and 32 plants screened. Sterols such as hormones oestrogen, testosterone and progestosterone have been reported to improve lactation [46, 73], plays a crucial role in the menstrual cycle and helps to maintain pregnancy [63]. Thus, sterols identified in this study may perhaps involve in the treatment of oligospermia, male impotence, female and male infertility etc. in the study area. This work is also in affinity with the findings of Sharaibi *et al.* [58], who reported, the aphrodisiac, antiviral and antibacterial properties of steroids compounds. Moreover, Noguchi *et al.* [74] revealed that, diosgenin, a natural progesterone made from sterols, regulate hormonal imbalance and improves female hormones. Sterols identified in this study may perhaps be involved in the synthesis of hormones, such as progesterone.

Alkaloids were only found in 15 plants. It is reported that several drugs have been obtained from alkaloid-containing plants because of their pharmacological importance like antimicrobial, antiarrhythmic and analgesic, although higher doses can be toxic [75, 76]. Thus,
alkaloids identified in this study may function to control some reproductive diseases such as dysmenorrhoea, abortion, leucorrhoea etc. According to Asiimwe and Savina [77] researchs, most plant species posses radical scavenging properties due to the presence of compounds like saponins, tannins and alkaloids. These chemical constituents boost immunity and fight fungal infections like *candida albicans*. It is known that dysmenorrhoea and leucorrhoea are almost due to fungal and bacterial infections.

Conclusion

Phytochemicals compounds present in the studied medicinal plants, justified their use in traditional medicine for the treatment of human reproductive organs diseases in the study area. They are widely used in traditional medicine to combat and treat various diseases. This research would increase the indigenous knowledge of traditional medicine in Cameroon. This work could also serve as precursors for the development of novel drugs for the management of reproductive health care in Cameroon. Secondary metabolites found in this study have been proven to be bioactive. However, alkaloids should be taken with precautions by pregnant women, because of their fetotoxic effects.

NOTE:

The study highlights the efficacy of "herbal", »medicinal plants » which is an ancient tradition, used in some parts of India. This ancient concept should be carefully evaluated in the light of modern medical science and can be utilized partially if found suitable.

References

16. Akanni OO, Owumi ES, Adaramoye AO. In vitro studies to assess the antioxidative, radical scavenging and arginase inhibitory potentials of extracts from Artocarpus altilis,

36. India J. Efficacy of some medicinal plants used in various parts of Kenya in treating selected bacterial and fungal pathogens. School of Applied Sciences of Kenyatta University, Master of Science. 2015, 153p.

75. Li N, Xia Q, Ruan J, Fu PP, Lin G. Hepatotoxicity and tumorigenicity induced by metabolic activation of pyrrolizidine alkaloids in herbs. *Current Drug Metabolism*. 2011; 12(9): 823-834.
